These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38541424)
1. Experimental Study on the Wind Erosion Resistance of Aeolian Sand Solidified by Microbially Induced Calcite Precipitation (MICP). Qu J; Li G; Ma B; Liu J; Zhang J; Liu X; Zhang Y Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541424 [TBL] [Abstract][Full Text] [Related]
2. Shear Strength Behaviors of Aeolian Sand Solidified by Microbially Induced Calcite Precipitation and Basalt Fiber Reinforcement. Li G; Liu J; Zhang J; Yang Y; Chen S Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687550 [TBL] [Abstract][Full Text] [Related]
3. Mechanical properties of aeolian sand cemented via microbially induced calcite precipitation (MICP). Li G; Zhang YJ; Hua XQ; Liu J; Liu X Sci Rep; 2024 Sep; 14(1):22745. PubMed ID: 39349566 [TBL] [Abstract][Full Text] [Related]
5. Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR). Liu J; Li X; Li G; Zhang J Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903064 [TBL] [Abstract][Full Text] [Related]
6. New non-ureolytic heterotrophic microbial induced carbonate precipitation for suppression of sand dune wind erosion. Hemayati M; Nikooee E; Habibagahi G; Niazi A; Afzali SF Sci Rep; 2023 Apr; 13(1):5845. PubMed ID: 37037897 [TBL] [Abstract][Full Text] [Related]
7. Effect of calcium sources on enzyme-induced carbonate precipitation to solidify desert aeolian sand. Wu L; Miao L; Sun X; Wang H J Environ Manage; 2024 Aug; 366():121687. PubMed ID: 38986374 [TBL] [Abstract][Full Text] [Related]
8. Study on the Shear Strength and Erosion Resistance of Sand Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP). Li G; Zhu Q; Liu J; Liu C; Zhang J Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124306 [TBL] [Abstract][Full Text] [Related]
9. Biocementation of Pyrite Tailings Using Microbially Induced Calcite Carbonate Precipitation. Kang B; Zha F; Deng W; Wang R; Sun X; Lu Z Molecules; 2022 Jun; 27(11):. PubMed ID: 35684545 [TBL] [Abstract][Full Text] [Related]
10. Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. Nikseresht F; Landi A; Sayyad G; Ghezelbash GR; Schulin R J Environ Manage; 2020 Aug; 268():110639. PubMed ID: 32510426 [TBL] [Abstract][Full Text] [Related]
11. Interface Mechanism and Splitting Characteristics of Fiber-Reinforced Cement-Solidified Aeolian Sand. Zhang X; Pang S; Li J; Zhang X; Cai G; Tian L Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454552 [TBL] [Abstract][Full Text] [Related]
12. Insights in MICP dynamics in urease-positive Staphylococcus sp. H6 and Sporosarcina pasteurii bacterium. Vaskevicius L; Malunavicius V; Jankunec M; Lastauskiene E; Talaikis M; Mikoliunaite L; Maneikis A; Gudiukaite R Environ Res; 2023 Oct; 234():116588. PubMed ID: 37423368 [TBL] [Abstract][Full Text] [Related]
13. Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes. Sun X; Miao L; Chen R; Wang H; Xia J J Environ Manage; 2022 Jan; 301():113883. PubMed ID: 34601348 [TBL] [Abstract][Full Text] [Related]
14. Microbially induced calcite precipitation performance of multiple landfill indigenous bacteria compared to a commercially available bacteria in porous media. Rajasekar A; Moy CKS; Wilkinson S; Sekar R PLoS One; 2021; 16(7):e0254676. PubMed ID: 34270610 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of microbial-induced calcite precipitation performance for soil surface improvement and toxicity assessment of the biostabilizer. Khalaj S; Naseri H; Talebi M; Almasi Ghale R; Tabandeh F Heliyon; 2024 Aug; 10(16):e35813. PubMed ID: 39220909 [TBL] [Abstract][Full Text] [Related]
16. Application of a High-Precision Aeolian Sand Collector in Field Wind and Sand Surveys. Liu X; Kang Y; Chen H; Lu H Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34299844 [TBL] [Abstract][Full Text] [Related]
17. A highly effective strain screened from soil and applied in cementing fine sand based on MICP-bonding technology. Wang X; Li C; He J J Biotechnol; 2022 May; 350():55-66. PubMed ID: 35429551 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of Sand Cementation with an Efficient Method of Microbial-Induced Calcite Precipitation. Wang L; Liu S Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640027 [TBL] [Abstract][Full Text] [Related]
19. Experimental Study on Bio-Reinforcement of Calcareous Sand through Hydrochloric Acid Solution Precipitation into Cementing Solution. Jiang Z; Wei R; Dai D; Li L; Shang Z; Tang J; Peng J; Li P Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834485 [TBL] [Abstract][Full Text] [Related]
20. Effects of Cement Dosage, Curing Time, and Water Dosage on the Strength of Cement-Stabilized Aeolian Sand Based on Macroscopic and Microscopic Tests. Yang H; Qian Z; Yue B; Xie Z Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]