These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38541424)

  • 21. Bio-cement-modified construction materials and their performances.
    Yu X; He Z; Li X
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11219-11231. PubMed ID: 34528205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Influence of the Addition of Plant-Based Natural Fibers (Jute) on Biocemented Sand Using MICP Method.
    Imran MA; Gowthaman S; Nakashima K; Kawasaki S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32967316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Investigation of the Impact of Blended Fibers on the Mechanical Properties and Microstructure of Aeolian Sand Concrete.
    Zhou Y; Li H; Yu S; Guo H
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.
    Martin RL; Kok JF
    Sci Adv; 2017 Jun; 3(6):e1602569. PubMed ID: 28630907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sandy Soil Improvement through Microbially Induced Calcite Precipitation (MICP) by Immersion.
    Liu S; Du K; Wen K; Huang W; Amini F; Li L
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plugging High-Permeability Zones of Oil Reservoirs by Microbially Mediated Calcium Carbonate Precipitation.
    Song C; Chen Y; Wang J
    ACS Omega; 2020 Jun; 5(24):14376-14383. PubMed ID: 32596575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Durability Improvement of Biocemented Sand by Fiber-Reinforced MICP for Coastal Erosion Protection.
    Imran MA; Nakashima K; Evelpidou N; Kawasaki S
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sand Erosion Resistance and Failure Mechanism of Polyurethane Film on Helicopter Rotor Blades.
    Zheng L; Fan J; Gong Q; Sun W; Jia X
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple model for predicting the hydraulic conductivity of MICP-treated sand.
    Wang Y; Huang L; Chandra B; Garg A
    Environ Sci Pollut Res Int; 2024 Aug; 31(40):52905-52916. PubMed ID: 39168933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Particle Crushing Test of Coated Calcareous Sand Based on MICP.
    Zhu S; Gong L; Hu Z; Xu Y; He Y; Long Y
    Materials (Basel); 2024 Sep; 17(19):. PubMed ID: 39410263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Clay on the Shear Strength of Microbially Cured Sand Particles.
    Feng D; Gao H; Li Z; Liang S
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Fiber Type and Length on Mechanical Properties of MICP-Treated Sand.
    Liang S; Xiao X; Wang J; Wang Y; Feng D; Zhu C
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Passivation of heavy metals in copper-nickel tailings by in-situ bio-mineralization: A pilot trial and mechanistic analysis.
    He Z; Xu Y; Yang X; Shi J; Wang X; Jin Z; Zhang D; Pan X
    Sci Total Environ; 2022 Sep; 838(Pt 4):156504. PubMed ID: 35688247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mineralization crust field experiment for desert sand solidification based on enzymatic calcification.
    Sun X; Miao L; Wang H; Yin W; Wu L
    J Environ Manage; 2021 Jun; 287():112315. PubMed ID: 33714047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dataset of wind blow sand erosion test on ultrasonic surface treated cementitious composites.
    Shi Y; Shi ZM
    Data Brief; 2020 Aug; 31():105943. PubMed ID: 32671151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MICP mediated by indigenous bacteria isolated from tailings for biocementation for reduction of wind erosion.
    Maureira A; Zapata M; Olave J; Jeison D; Wong LS; Panico A; Hernández P; Cisternas LA; Rivas M
    Front Bioeng Biotechnol; 2024; 12():1393334. PubMed ID: 38938979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soil organic carbon (SOC) enrichment in aeolian sediments and SOC loss by dust emission in the desert steppe, China.
    Du H; Li S; Webb NP; Zuo X; Liu X
    Sci Total Environ; 2021 Dec; 798():149189. PubMed ID: 34333433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of unconfined compressive strength and environmental impact of MICP-treated lead-zinc tailings sand instead of sand as embankment material.
    Yang Z; Liu L; Dong Y; Liu X; Wang X
    Sci Total Environ; 2024 Jun; 931():172809. PubMed ID: 38679087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-scale analysis of the mechanism of microbially induced calcium carbonate precipitation consolidation loess.
    Zhou X; Wang G; Zhang H; Jia C; Tang G
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78469-78481. PubMed ID: 37269526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbially induced calcite precipitation using Bacillus velezensis with guar gum.
    Dikshit R; Jain A; Dey A; Kumar A
    PLoS One; 2020; 15(8):e0236745. PubMed ID: 32785276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.