These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38541507)

  • 1. Strength Characteristics, Ultrasonic Wave Velocity, and the Correlation between Them in Clay Bricks under Dry and Saturated Conditions.
    Jamshidi A; Sousa L
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Construction Material Using Wastewater: An Application of Circular Economy for Mass Production of Bricks.
    Ghafoor S; Hameed A; Shah SAR; Azab M; Faheem H; Nawaz MF; Iqbal F
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of P-wave velocity with mechanical and physical properties of limestone with statistical analysis.
    Arman H
    Sci Rep; 2021 Dec; 11(1):24104. PubMed ID: 34916572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new heavy-mineral doped clay brick for gamma-ray protection purposes.
    Mahmoud KA; Tashlykov OL; Mhareb MHA; Almuqrin AH; Alajerami YSM; Sayyed MI
    Appl Radiat Isot; 2021 Jul; 173():109720. PubMed ID: 33894469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive study on the Python-based regression machine learning models for prediction of uniaxial compressive strength using multiple parameters in Charnockite rocks.
    Kochukrishnan S; Krishnamurthy P; D Y; Kaliappan N
    Sci Rep; 2024 Mar; 14(1):7360. PubMed ID: 38548837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on the properties of modern blue clay brick for Kaifeng People's Conference Hall.
    Ma S; Wu Y; Bao P
    Sci Rep; 2021 Oct; 11(1):20631. PubMed ID: 34667201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable Use of Marble Waste in Industrial Production of Fired Clay Bricks and Its Employment for Treatment of Flue Gases.
    Ahmad S; Hassan Shah MU; Ullah A; Shah SN; Rehan MS; Khan IA; Ahmad MI
    ACS Omega; 2021 Sep; 6(35):22559-22569. PubMed ID: 34514228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralogical, geochemical, and geotechnical features of lateritic soils from termite mounds in two contrasting savannah areas (central Cameroon) as raw materials for brick making.
    Kessoum Adamou JM; Ntouala RFD; Ndome Effoudou E; Nanga Bineli MT; Ngo'o Ze A; Hamadjida G; Onana VL
    Heliyon; 2023 Jun; 9(6):e17257. PubMed ID: 37389072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable use of tannery sludge in brick manufacturing in Bangladesh.
    Juel MAI; Mizan A; Ahmed T
    Waste Manag; 2017 Feb; 60():259-269. PubMed ID: 28081994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The New Standard Is Biodigital: Durable and Elastic 3D-Printed Biodigital Clay Bricks.
    Estévez AT; Abdallah YK
    Biomimetics (Basel); 2022 Oct; 7(4):. PubMed ID: 36278716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hygric Properties of Machine-Made, Historic Clay Bricks from North-Eastern Poland (Former East Prussia): Characterization and Specification for Replacement Materials.
    Tunkiewicz M; Misiewicz J; Sikora P; Chung SY
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Durability Assessment and Microstructure of High-Strength Performance Bricks Produced from PET Waste and Foundry Sand.
    Aneke FI; Awuzie BO; Mostafa MMH; Okorafor C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manufacturing of Sustainable Untreated Coal Ash Masonry Units for Structural Applications.
    Abbass W; Abbas S; Aslam F; Ahmed A; Ahmed T; Hashir A; Mamdouh A
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of eco-friendly porous fired clay bricks using pore-forming agents: a review.
    Bories C; Borredon ME; Vedrenne E; Vilarem G
    J Environ Manage; 2014 Oct; 143():186-96. PubMed ID: 24908498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of water repellent chemical additive and different curing regimes on dimensional stability and strength of earth bricks from termite mound-clay.
    Akinyemi BA; Bamidele A; Oluwanifemi A
    Heliyon; 2019 Jan; 5(1):e01182. PubMed ID: 30775576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of using arsenic-iron sludge wastes in brick making.
    Hassan KM; Fukushi K; Turikuzzaman K; Moniruzzaman SM
    Waste Manag; 2014 Jun; 34(6):1072-8. PubMed ID: 24129213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Experimental and Empirical Study on the Use of Waste Marble Powder in Construction Material.
    Sufian M; Ullah S; Ostrowski KA; Ahmad A; Zia A; Śliwa-Wieczorek K; Siddiq M; Awan AA
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.