These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38541507)

  • 21. Forms of Damage of Bricks Subjected to Cyclic Freezing and Thawing in Actual Conditions.
    Stryszewska T; Kańka S
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Freeze-Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess.
    Wang W; Cao G; Li Y; Zhou Y; Lu T; Zheng B; Geng W
    Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of Drilling Rate Index Based on Rock Strength Using Regression Analysis.
    Yenice H
    An Acad Bras Cienc; 2019; 91(3):e20181095. PubMed ID: 31618413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recycling of Cigarette Butts in Fired Clay Bricks: A New Laboratory Investigation.
    Kurmus H; Mohajerani A
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Management of spent shea waste: An instrumental characterization and valorization in clay bricks construction.
    Adazabra AN; Viruthagiri G; Shanmugam N
    Waste Manag; 2017 Jun; 64():286-304. PubMed ID: 28336335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporation of sewage sludge in clay brick and its characterization.
    Liew AG; Idris A; Wong CH; Samad AA; Noor MJ; Baki AM
    Waste Manag Res; 2004 Aug; 22(4):226-33. PubMed ID: 15462329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Pore-Size Distribution on the Resistance of Clay Brick to Freeze-Thaw Cycles.
    Netinger Grubeša I; Vračević M; Ranogajec J; Vučetić S
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental risks and mechanical evaluation of recycling red mud in bricks.
    Arroyo F; Luna-Galiano Y; Leiva C; Vilches LF; Fernández-Pereira C
    Environ Res; 2020 Jul; 186():109537. PubMed ID: 32315825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the characteristics of building bricks produced from reservoir sediment.
    Chiang KY; Chien KL; Hwang SJ
    J Hazard Mater; 2008 Nov; 159(2-3):499-504. PubMed ID: 18384952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Re-using an oleic by-product in the manufacturing of fired clay bricks.
    Fakih Lanjri H; Bougrine O; Fath Allah R; Ammari M; Ben Allal L
    Heliyon; 2024 Jul; 10(13):e34052. PubMed ID: 39091936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Valorization of stabilized river sediments in fired clay bricks: factory scale experiment.
    Samara M; Lafhaj Z; Chapiseau C
    J Hazard Mater; 2009 Apr; 163(2-3):701-10. PubMed ID: 18814963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the Engineering Properties of Rocks from Textural Characteristics Using Some Soft Computing Approaches.
    Fereidooni D; Sousa L
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Volcanic Tuff as Secondary Raw Material in the Production of Clay Bricks.
    Cobîrzan N; Thalmaier G; Balog AA; Constantinescu H; Ceclan A; Nasui M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of Limestone Waste Addition for Fired Clay Bricks.
    Thalmaier G; Cobȋrzan N; Balog AA; Constantinescu H; Ceclan A; Voinea M; Marinca TF
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of textile effluent treatment plant sludge and its industrial application in fired clay bricks with health risk assessment.
    Fatema K; Nayem MA; Sanzid MS
    J Environ Manage; 2024 Feb; 351():119965. PubMed ID: 38171128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating Radiation Shielding of Fired Clay Bricks Using ANN and GEP Approaches.
    Amin MN; Ahmad I; Abbas A; Khan K; Qadir MG; Iqbal M; Abu-Arab AM; Alabdullah AA
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material.
    Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determine the compressive strength of calcium silicate bricks by combined nondestructive method.
    Brozovsky J
    ScientificWorldJournal; 2014; 2014():829794. PubMed ID: 25276864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.