These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38541510)

  • 1. Study of Fatigue Crack Initiation and the Propagation Mechanism Induced by Pores in a Powder Metallurgy Nickel-Based FGH96 Superalloy.
    Yi S; Zhang S; Wang D; Mao J; Zhang Z; Hu D
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on Microstructure and Fatigue Properties of FGH96 Nickel-Based Superalloy.
    Bai Y; Yang S; Zhu M; Fan C
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy.
    Tan L; He G; Liu F; Li Y; Jiang L
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29495312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue Behavior of the FGH96 Superalloy under High-Temperature Cyclic Loading.
    Li Z; Qin H; Xu K; Xie Z; Ji P; Jia M
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study on Fatigue Crack Propagation for Friction Stir Welded Plate of 7N01 Al-Zn-Mg Alloy by EBSD.
    Liu W; Wu D; Duan S; Wang T; Zou Y
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Electroplated CBN Wheel Wear on Grinding Surface Morphology of Powder Metallurgy Superalloy FGH96.
    Wang H; Li X; Wang Z; Xu R
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding.
    Zhang S; Xu Y; Fu H; Wen Y; Wang Y; Liu X
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very High Cycle Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy DZ4.
    Nie B; Zhao Z; Liu S; Chen D; Ouyang Y; Hu Z; Fan T; Sun H
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29320429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Study of the Internal Deformation Fields and the Related Microstructure Evolution during Thermal Fatigue Tests of a Single-Crystal Ni-Base Superalloy.
    Zong C; Liu S; Ma G; Guo Y; Huang Z
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of fatigue crack initiation facets in Ti-6Al-4V using focused ion beam milling and electron backscatter diffraction.
    Everaerts J; Verlinden B; Wevers M
    J Microsc; 2017 Jul; 267(1):57-69. PubMed ID: 28294326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic orientation data from chloride-induced stress corrosion crack (CISCC) paths in gas tungsten arc welded (GTAW) austenitic stainless steel 304L.
    Qu HJ; Wharry JP
    Data Brief; 2022 Jun; 42():108059. PubMed ID: 35345845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Crack-Free Nickel-Based Superalloy Considered Non-Weldable during Laser Powder Bed Fusion.
    Sanchez-Mata O; Wang X; Muñiz-Lerma JA; Attarian Shandiz M; Gauvin R; Brochu M
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30046019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Pore-Crack Relative Location on Crack Propagation in Porous Granite Based on the Phase-Field Regularized Cohesion Model.
    Zhang S; Shen Q
    Materials (Basel); 2023 Dec; 16(23):. PubMed ID: 38068218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Approach to the Uniform Dispersion of Graphene Nanosheets in Powder Metallurgy Nickel-Based Superalloy.
    Gao YX; Zou JW; Wang XF; Yang J; Li Z; Zhu YY; Wang HM
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30909633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Thermal Fatigue Life and Crack Morphology in Brake Discs of Low-Alloy Steel for High-Speed Trains.
    Wang J; Chen Y; Zuo L; Zhao H; Ma N
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Thermal Stress on the Formation and Cracking Behavior of Nickel-Based Superalloys by Selective Laser Melting Based on a Coupled Thermo-Mechanical Model.
    Nie S; Li L; Wang Q; Zhao R; Lin X; Liu F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P-Texture Effect on the Fatigue Crack Propagation Resistance in an Al-Cu-Mg Alloy Bearing a Small Amount of Silver.
    Hu Y; Liu Z; Zhao Q; Bai S; Liu F
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30563279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on the Fatigue Crack Propagation of Medium-Entropy Alloys with Heterogeneous Microstructures.
    Liu Y; Jiang P; Duan G; Wang J; Zhou L; Xie J
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy.
    Qian D; Xue J; Zhang A; Li Y; Tamura N; Song Z; Chen K
    Sci Rep; 2017 Jun; 7(1):2859. PubMed ID: 28588298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.