These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38541512)
1. Study on the High-Temperature Interaction between Coke and Iron Ores with Different Layer Thicknesses. Wang YH; Du P; Diao J; Xie B; Zhu MH Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541512 [TBL] [Abstract][Full Text] [Related]
2. Effect of Binders on the Crushing Strength of Ferro-Coke. Xu R; Deng S; Wang W; Zheng H; Chen S; Huang X; Wang F Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33578898 [TBL] [Abstract][Full Text] [Related]
3. Graphitization and Performance of Deadman Coke in a Large Dissected Blast Furnace. Guo Z; Jiao K; Zhang J; Ma H; Meng S; Wang Z; Zhang J; Zong Y ACS Omega; 2021 Oct; 6(39):25430-25439. PubMed ID: 34632201 [TBL] [Abstract][Full Text] [Related]
4. Calculation of Coke Layers Situation in the Cohesive Zone of Blast Furnace. Bernasowski M; Klimczyk A; Stachura R Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33401614 [TBL] [Abstract][Full Text] [Related]
5. Use of Hydrogen-Rich Gas in Blast Furnace Ironmaking of V-bearing Titanomagnetite: Mass and Energy Balance Calculations. Gao X; Zhang R; You Z; Yu W; Dang J; Bai C Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079458 [TBL] [Abstract][Full Text] [Related]
6. A comprehensive investigation of the reaction behaviorial features of coke with different CRIs in the simulated cohesive zone of a blast furnace. Lv QQ; Tian YS; Zhou JL; Ren HW; Wang GH PLoS One; 2021; 16(1):e0245124. PubMed ID: 33428653 [TBL] [Abstract][Full Text] [Related]
7. Temperature Measurement Method for Blast Furnace Molten Iron Based on Infrared Thermography and Temperature Reduction Model. Pan D; Jiang Z; Chen Z; Gui W; Xie Y; Yang C Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404156 [TBL] [Abstract][Full Text] [Related]
8. Effect of Iron Particles on the Coke Solution Loss Reaction. Huang J; Yang Y; Cao Y; Song L; Huang D ACS Omega; 2020 Oct; 5(39):25042-25048. PubMed ID: 33043182 [TBL] [Abstract][Full Text] [Related]
9. Integrating a Top-Gas Recycling and CO Hu Y; Qiu Y; Chen J; Hao L; Rufford TE; Rudolph V; Wang G Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329460 [TBL] [Abstract][Full Text] [Related]
10. Metallurgical Coke Production with Biomass Additives: Study of Biocoke Properties for Blast Furnace and Submerged Arc Furnace Purposes. Bazaluk O; Kieush L; Koveria A; Schenk J; Pfeiffer A; Zheng H; Lozynskyi V Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161091 [TBL] [Abstract][Full Text] [Related]
11. Coupled Typical Coke Gasification and Sintering Ore Reduction in CO-N Hu J; Qin Y; Li X; Liu H; Deng Y; Liu H ACS Omega; 2022 Sep; 7(38):34420-34427. PubMed ID: 36188322 [TBL] [Abstract][Full Text] [Related]
12. A study on the characteristics of coke in the hearth of a superlarge blast furnace. Lv QQ; Tian YS; Du P; Zhou JL; Wang GH PLoS One; 2021; 16(3):e0247051. PubMed ID: 33657163 [TBL] [Abstract][Full Text] [Related]
13. Influence of Fe Qiu S; Yu X; Chen Y; Huang X; Yin C; Zhang S ACS Omega; 2023 Sep; 8(35):31946-31953. PubMed ID: 37692214 [TBL] [Abstract][Full Text] [Related]
14. Reduction of CO Angeli SD; Gossler S; Lichtenberg S; Kass G; Agrawal AK; Valerius M; Kinzel KP; Deutschmann O Angew Chem Int Ed Engl; 2021 May; 60(21):11852-11857. PubMed ID: 33661578 [TBL] [Abstract][Full Text] [Related]
15. A Simple Method of Evaluating the Thermal Properties of Metallurgical Cokes under High Temperature. Yang G; Wang X; Shi T; Wu X; Xue Y Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640162 [TBL] [Abstract][Full Text] [Related]
16. The Effects of MgO and Al Li Z; Li T; Sun C; Yang S; Wang Q Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570194 [TBL] [Abstract][Full Text] [Related]
17. Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace. Kuo YM; Lin TC; Tsai PJ; Lee WJ; Lin HY Chemosphere; 2003 Apr; 51(4):313-9. PubMed ID: 12604083 [TBL] [Abstract][Full Text] [Related]
18. Toward environmentally friendly direct reduced iron production: A novel route of comprehensive utilization of blast furnace dust and electric arc furnace dust. Ye L; Peng Z; Ye Q; Wang L; Augustine R; Perez M; Liu Y; Liu M; Tang H; Rao M; Li G; Jiang T Waste Manag; 2021 Nov; 135():389-396. PubMed ID: 34610538 [TBL] [Abstract][Full Text] [Related]
19. Change of the Petrographic Characteristics of Semi-Coke in the Iron Ore Sintering Process. Xu Z; Wang S; Fang H; Wu X; Qu L ACS Omega; 2023 Feb; 8(8):7922-7931. PubMed ID: 36873035 [TBL] [Abstract][Full Text] [Related]
20. A Real-Time 3D Measurement System for the Blast Furnace Burden Surface Using High-Temperature Industrial Endoscope. Xu T; Chen Z; Jiang Z; Huang J; Gui W Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]