These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38541550)

  • 21. Effect of Aging Time on Microstructure and Mechanical Properties in a Cu-Bearing Marine Engineering Steel.
    Sun M; Xu Y; Wang J
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Mo and Cr on the Microstructure and Properties of Low-Alloy Wear-Resistant Steels.
    Xia T; Ma Y; Zhang Y; Li J; Xu H
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Fabrication of Ultrahigh-Strength Steel with a Nanolath Structure via Quenching-Partitioning-Tempering.
    Xu W; Xie L; Liu X; Wang J; Xu Y; He M; Hu K; Liu C; Yu W
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructure and Mechanical Properties of a Medium-Mn Steel with 1.3 GPa-Strength and 40%-Ductility.
    Bai S; Xiao W; Niu W; Li D; Liang W
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33926143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergetic Effects of Ferrite Content and Tempering Temperature on Mechanical Properties of a 960 MPa Grade HSLA Steel.
    Wang S; Yu H; Zhou T; Wang L
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Study of the Tempering Behavior of Different Martensitic Steels by Means of In-Situ Diffractometry and Dilatometry.
    Hunkel M; Dong J; Epp J; Kaiser D; Dietrich S; Schulze V; Rajaei A; Hallstedt B; Broeckmann C
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33182632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Al Additions and Cooling Rate on the Microstructure and Mechanical Properties of Austenite FeMnAlC Steels.
    Wang C; Cao C; Zhang J; Wang H; Cao W
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Reheating Temperature on the Microstructure and Properties of Cu-Containing 440 MPa Grade Non-Tempered Ship Plate Steel.
    Zhang D; Chai F; Luo X; Shi Z
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Temperature on Microstructure and Mechanical Properties of Fe-9Ni-2Cu Steel during the Tempering Process.
    Huang X; Wang L; Wang Z; Wang Z; Liu Q
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wear-Resistance Improvement of 65Mn Low-Alloy Steel through Adjusting Grain Refinement by Cyclic Heat Treatment.
    Tong Y; Zhang YQ; Zhao J; Quan GZ; Xiong W
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni.
    Krawczyk J; Bała P; Pacyna J
    J Microsc; 2010 Mar; 237(3):411-5. PubMed ID: 20500408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quenching and Tempering-Dependent Evolution on the Microstructure and Mechanical Performance Based on a Laser Additively Manufactured 12CrNi2 Alloy Steel.
    Zhang W; Shang X; Chen X; Chen S; Liu Z; Zhang L
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cu Precipitation Behaviors and Microscopic Mechanical Characteristics of a Novel Ultra-Low Carbon Steel.
    Sun M; Xu Y; Xu T
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Silicon, Chromium, and Copper on Kinetic Parameters of Precipitation during Tempering of Medium Carbon Steels.
    Gokhman A; Nový Z; Salvetr P; Ryukhtin V; Strunz P; Motyčka P; Zmeko J; Kotous J
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-strength, low-alloy steels.
    Rashid MS
    Science; 1980 May; 208(4446):862-9. PubMed ID: 17772810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.
    Inoue T; Kimura Y; Ochiai S
    Sci Technol Adv Mater; 2012 Jun; 13(3):035005. PubMed ID: 27877493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cryogenic Treatment of Martensitic Steels: Microstructural Fundamentals and Implications for Mechanical Properties and Wear and Corrosion Performance.
    Jurči P; Dlouhý I
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dilatometric and Microstructural Study of Martensite Tempering in 4% Mn Steel.
    Grajcar A; Morawiec M; Jimenez JA; Garcia-Mateo C
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33036358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microstructure and Mechanical Properties of the 6 wt% Mn-Doped Martensitic Steel Strengthened by Cu/NiAl Nanoparticles.
    Jiang Y; Xu S; Lu X; Wu X; Chen L; Liu S; Li X
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microstructure, Tensile Properties, and Fracture Toughness of an In Situ Rolling Hybrid with Wire Arc Additive Manufacturing AerMet100 Steel.
    Lei L; Ke L; Xiong Y; Liu S; Du L; Chen M; Xiao M; Fu Y; Yao F; Yang F; Wang K; Li B
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.