These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38541594)
21. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide. Anthonysamy SBI; Afandi SB; Khavarian M; Mohamed ARB Beilstein J Nanotechnol; 2018; 9():740-761. PubMed ID: 29600136 [TBL] [Abstract][Full Text] [Related]
22. Promotional effect of rare earth-doped manganese oxides supported on activated semi-coke for selective catalytic reduction of NO with NH Yan Z; Qu Y; Liu L; Ge X; Yang J; Wei L; Yang T; Wang X Environ Sci Pollut Res Int; 2017 Nov; 24(31):24473-24484. PubMed ID: 28895018 [TBL] [Abstract][Full Text] [Related]
23. The Unique CO Activation Effects for Boosting NH Liao Y; Liu Z; Li Z; Gao G; Ji L; Xu H; Huang W; Qu Z; Yan N Environ Sci Technol; 2022 Jul; 56(14):10402-10411. PubMed ID: 35815997 [TBL] [Abstract][Full Text] [Related]
24. New insights and reaction mechanisms in the design of catalysts for the synergistic removal of NO Chen Z; Zhao C; Wei N; Yun J; Chu R; Zheng H; Feng X; Tong Z; Chen Z J Hazard Mater; 2024 Sep; 477():135052. PubMed ID: 39067287 [TBL] [Abstract][Full Text] [Related]
25. Effects of Chlorine Addition on Nitrogen Oxide Reduction and Mercury Oxidation over Selective Catalytic Reduction Catalysts. Ji M; Li H; Hu K; Hu J ACS Omega; 2022 Apr; 7(14):12098-12110. PubMed ID: 35449900 [TBL] [Abstract][Full Text] [Related]
26. Effect of iron loading on the performance and structure of Fe/ZSM-5 catalyst for the selective catalytic reduction of NO with NH Wang XT; Hu HP; Zhang XY; Su XX; Yang XD Environ Sci Pollut Res Int; 2019 Jan; 26(2):1706-1715. PubMed ID: 30448951 [TBL] [Abstract][Full Text] [Related]
27. Enhanced Activity of Alkali-Treated ZSM-5 Zeolite-Supported Pt-Co Catalyst for Selective Hydrogenation of Cinnamaldehyde. Cheng S; Lu S; Liu X; Li G; Wang F Molecules; 2023 Feb; 28(4):. PubMed ID: 36838718 [TBL] [Abstract][Full Text] [Related]
28. OSDA-Free Seeded Cu-Containing ZSM-5 Applied for NH Jabłońska M; Palčić A; Lukman MF; Wach A; Bertmer M; Poppitz D; Denecke R; Wu X; Simon U; Pöppl A; Gläser R ACS Omega; 2023 Nov; 8(44):41107-41119. PubMed ID: 37970047 [TBL] [Abstract][Full Text] [Related]
29. Potential Risk of NH Yuan J; Wang Z; Liu J; Li J; Chen J Environ Sci Technol; 2023 Jan; 57(1):606-614. PubMed ID: 36524894 [TBL] [Abstract][Full Text] [Related]
30. Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy. Boubnov A; Carvalho HW; Doronkin DE; Günter T; Gallo E; Atkins AJ; Jacob CR; Grunwaldt JD J Am Chem Soc; 2014 Sep; 136(37):13006-15. PubMed ID: 25105343 [TBL] [Abstract][Full Text] [Related]
31. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles. Zhang J; Sun B; Huang Y; Guan X Chemosphere; 2015 Dec; 141():154-61. PubMed ID: 26196405 [TBL] [Abstract][Full Text] [Related]
32. Effect of K-Modified Blue Coke-Based Activated Carbon on Low Temperature Catalytic Performance of Supported Mn-Ce/Activated Carbon. Shen Z; Xing X; Wang S; Lv M; Li J; Li T ACS Omega; 2022 Mar; 7(10):8798-8807. PubMed ID: 35309461 [TBL] [Abstract][Full Text] [Related]
33. A novel CNTs functionalized CeO Pu Y; Wang P; Jiang W; Dai Z; Yang L; Jiang X; Jiang Z; Yao L Chemosphere; 2021 Dec; 284():131377. PubMed ID: 34225121 [TBL] [Abstract][Full Text] [Related]
34. Catalytic Oxidation of CO and Benzene over Metal Nanoparticles Loaded on Hierarchical MFI Zeolite. Todorova T; Petrova P; Kalvachev Y Molecules; 2021 Sep; 26(19):. PubMed ID: 34641437 [TBL] [Abstract][Full Text] [Related]
35. Enhanced resistance to calcium poisoning on Zr-modified Cu/ZSM-5 catalysts for the selective catalytic reduction of NO with NH Xue H; Meng T; Liu F; Guo X; Wang S; Mao D RSC Adv; 2019 Nov; 9(66):38477-38485. PubMed ID: 35540228 [TBL] [Abstract][Full Text] [Related]
36. From waste to catalyst: Growth mechanisms of ZSM-5 zeolite from coal fly ash & rice husk ash and its performance as catalyst for tetracycline degradation in fenton-like oxidation. Zhao Y; Gu S; Li L; Wang M Environ Pollut; 2024 Mar; 345():123509. PubMed ID: 38325512 [TBL] [Abstract][Full Text] [Related]
37. Recent Advancements in Fe-Based Catalysts for the Efficient Reduction of NO Lian D; Chen M; Wang H; Li C; Dai G; Liu B; Hou S; Zhang W; Wu K; Ji Y Chem Asian J; 2024 Dec; 19(23):e202400802. PubMed ID: 39240103 [TBL] [Abstract][Full Text] [Related]
38. Effect of Mo contents on properties of Mo/ZSM-5 zeolite catalyst for NOx reduction. Li Z; Huang W; Xie KC J Environ Sci (China); 2005; 17(1):103-5. PubMed ID: 15900767 [TBL] [Abstract][Full Text] [Related]
39. Developing Fe/zeolite catalysts for efficient catalytic wet peroxidation of three isomeric cresols. Chen L; Sun W; Wei H; Yang X; Sun C; Yu L Environ Sci Pollut Res Int; 2021 Aug; 28(31):42622-42636. PubMed ID: 33818723 [TBL] [Abstract][Full Text] [Related]
40. Ce-promoted Mn/ZSM-5 catalysts for highly efficient decomposition of ozone. Wei L; Chen H; Wei Y; Jia J; Zhang R J Environ Sci (China); 2021 May; 103():219-228. PubMed ID: 33743904 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]