These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 38541890)
1. Clinical Evaluation of Corneal Endothelial Parameters following Laser Refractive Surgery in Myopic Eyes: A Review. Juda M; Bedliński M; Roszkowska AM; Wierzbowska J J Clin Med; 2024 Mar; 13(6):. PubMed ID: 38541890 [No Abstract] [Full Text] [Related]
3. Clinical Evaluation of Corneal Biomechanics following Laser Refractive Surgery in Myopic Eyes: A Review of the Literature. Pniakowska Z; Jurowski P; Wierzbowska J J Clin Med; 2022 Dec; 12(1):. PubMed ID: 36615041 [TBL] [Abstract][Full Text] [Related]
4. Past and present of corneal refractive surgery: a retrospective study of long-term results after photorefractive keratectomy and a prospective study of refractive lenticule extraction. Vestergaard AH Acta Ophthalmol; 2014 Mar; 92 Thesis 2():1-21. PubMed ID: 24636364 [TBL] [Abstract][Full Text] [Related]
5. Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia. Pallikaris IG; Siganos DS J Refract Corneal Surg; 1994; 10(5):498-510. PubMed ID: 7530099 [TBL] [Abstract][Full Text] [Related]
6. Comparison of corneal biomechanical changes after refractive surgery by noncontact tonometry: small-incision lenticule extraction versus flap-based refractive surgery - a systematic review. Raevdal P; Grauslund J; Vestergaard AH Acta Ophthalmol; 2019 Mar; 97(2):127-136. PubMed ID: 30203530 [TBL] [Abstract][Full Text] [Related]
7. Influence of tomographic and biomechanical corneal indexes on myopic refractive surgery indications: A multicenter study. Duch F; López-Marín I; Alonso-Aliste F; Hernández-Barahona-Campos M; Manito SC; Sánchez-Trancón Á; Cadarso L; Sánchez-González JM; Fernández J Eur J Ophthalmol; 2022 Sep; 32(5):2630-2637. PubMed ID: 34751040 [TBL] [Abstract][Full Text] [Related]
8. Comparison of changes in refractive error and corneal curvature following small-incision lenticule extraction and femtosecond laser-assisted Zhang YL; Cao LJ; Chen HW; Xu XH; Li ZN; Liu L Indian J Ophthalmol; 2018 Nov; 66(11):1562-1567. PubMed ID: 30355861 [TBL] [Abstract][Full Text] [Related]
9. Review of Laser Vision Correction (LASIK, PRK and SMILE) with Simultaneous Accelerated Corneal Crosslinking - Long-term Results. Lim EWL; Lim L Curr Eye Res; 2019 Nov; 44(11):1171-1180. PubMed ID: 31411927 [No Abstract] [Full Text] [Related]
10. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis. Guo H; Hosseini-Moghaddam SM; Hodge W BMC Ophthalmol; 2019 Aug; 19(1):167. PubMed ID: 31370817 [TBL] [Abstract][Full Text] [Related]
11. Predictors affecting myopic regression in - 6.0D to - 10.0D myopia after laser-assisted subepithelial keratomileusis and laser in situ keratomileusis flap creation with femtosecond laser-assisted or mechanical microkeratome-assisted. Zhou J; Gu W; Li S; Wu L; Gao Y; Guo X Int Ophthalmol; 2020 Jan; 40(1):213-225. PubMed ID: 31571091 [TBL] [Abstract][Full Text] [Related]
12. Effects of laser in situ keratomileusis (LASIK) on the corneal endothelium 3 years postoperatively. Collins MJ; Carr JD; Stulting RD; Azar RG; Waring GO; Smith RE; Thompson KP; Edelhauser HF Am J Ophthalmol; 2001 Jan; 131(1):1-6. PubMed ID: 11162971 [TBL] [Abstract][Full Text] [Related]
13. Changes in central corneal thickness after laser in situ keratomileusis and photorefractive keratectomy. Kozak I; Hornak M; Juhas T; Shah A; Rawlings EF J Refract Surg; 2003; 19(2):149-53. PubMed ID: 12701720 [TBL] [Abstract][Full Text] [Related]
14. Laser-assisted subepithelial keratectomy (LASEK) versus photorefractive keratectomy (PRK) for correction of myopia. Li SM; Zhan S; Li SY; Peng XX; Hu J; Law HA; Wang NL Cochrane Database Syst Rev; 2016 Feb; 2(2):CD009799. PubMed ID: 26899152 [TBL] [Abstract][Full Text] [Related]
15. Corneal endothelial cell changes 5 years after laser in situ keratomileusis: femtosecond laser versus mechanical microkeratome. Klingler KN; McLaren JW; Bourne WM; Patel SV J Cataract Refract Surg; 2012 Dec; 38(12):2125-30. PubMed ID: 23073480 [TBL] [Abstract][Full Text] [Related]
16. Longitudinal evaluation of posterior corneal elevation after laser refractive surgery using swept-source optical coherence tomography. Chan TC; Liu D; Yu M; Jhanji V Ophthalmology; 2015 Apr; 122(4):687-92. PubMed ID: 25487425 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of Laser Refractive Surgery to Address Anisometropic Amblyogenic Refractive Error in Children: A Report by the American Academy of Ophthalmology. Cavuoto KM; Chang MY; Heidary G; Morrison DG; Trivedi RH; Binenbaum G; Kim SJ; Pineles SL Ophthalmology; 2022 Nov; 129(11):1323-1331. PubMed ID: 35987663 [TBL] [Abstract][Full Text] [Related]
18. Structural analysis of the cornea using scanning-slit corneal topography in eyes undergoing excimer laser refractive surgery. Kamiya K; Miyata K; Tokunaga T; Kiuchi T; Hiraoka T; Oshika T Cornea; 2004 Nov; 23(8 Suppl):S59-64. PubMed ID: 15448482 [TBL] [Abstract][Full Text] [Related]
19. Factors Affecting Long-term Myopic Regression after Laser In Situ Keratomileusis and Laser-assisted Subepithelial Keratectomy for Moderate Myopia. Lim SA; Park Y; Cheong YJ; Na KS; Joo CK Korean J Ophthalmol; 2016 Apr; 30(2):92-100. PubMed ID: 27051256 [TBL] [Abstract][Full Text] [Related]
20. Endothelial cell density after photorefractive keratectomy for moderate myopia using a 213 nm solid-state laser system. Tsiklis NS; Kymionis GD; Pallikaris AI; Diakonis VF; Ginis HS; Kounis GA; Panagopoulou SI; Pallikaris IG J Cataract Refract Surg; 2007 Nov; 33(11):1866-70. PubMed ID: 17964390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]