These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 38542241)
21. Biological Effects of Double-Layered Hydroxyapatite and Zirconium Oxide Depositions on Titanium Surfaces. Ji MK; Chun Y; Jeong G; Kim HS; Kim WJ; Ryu JH; Cho H; Lim HP Int J Nanomedicine; 2024; 19():8015-8027. PubMed ID: 39130690 [TBL] [Abstract][Full Text] [Related]
22. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Ke D; Vu AA; Bandyopadhyay A; Bose S Acta Biomater; 2019 Jan; 84():414-423. PubMed ID: 30500448 [TBL] [Abstract][Full Text] [Related]
23. Facile synthesis of black phosphorus-zinc oxide nanohybrids for antibacterial coating of titanium surface. Bose S; Surendhiran D; Chun BS; Arthanari S; Tran VN; Lee H; Kang HW Colloids Surf B Biointerfaces; 2022 Nov; 219():112807. PubMed ID: 36088832 [TBL] [Abstract][Full Text] [Related]
24. Nanostructured Ag Huang Y; Song G; Chang X; Wang Z; Zhang X; Han S; Su Z; Yang H; Yang D; Zhang X Int J Nanomedicine; 2018; 13():2665-2684. PubMed ID: 29760549 [TBL] [Abstract][Full Text] [Related]
25. All-in-one trifunctional strategy: A cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Hoyos-Nogués M; Buxadera-Palomero J; Ginebra MP; Manero JM; Gil FJ; Mas-Moruno C Colloids Surf B Biointerfaces; 2018 Sep; 169():30-40. PubMed ID: 29747028 [TBL] [Abstract][Full Text] [Related]
26. Zinc-Doping Induces Evolution of Biocompatible Strontium-Calcium-Phosphate Conversion Coating on Titanium to Improve Antibacterial Property. Zuo K; Wang L; Wang Z; Yin Y; Du C; Liu B; Sun L; Li X; Xiao G; Lu Y ACS Appl Mater Interfaces; 2022 Feb; 14(6):7690-7705. PubMed ID: 35114085 [TBL] [Abstract][Full Text] [Related]
27. [Influence of antimicrobial peptide biofunctionalized TiO Li Y; Wang JJ; He YD; Xu M; Li XY; Xu BY; Zhang YM Zhonghua Kou Qiang Yi Xue Za Zhi; 2023 Feb; 58(2):165-173. PubMed ID: 36746450 [No Abstract] [Full Text] [Related]
28. Optimizing alkaline hydrothermal treatment for biomimetic smart metallic orthopedic and dental implants. Hadady H; Alam A; Khurana I; Mutreja I; Kumar D; Shankar MR; Dua R J Mater Sci Mater Med; 2024 Jun; 35(1):31. PubMed ID: 38896291 [TBL] [Abstract][Full Text] [Related]
29. Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. Hizal F; Zhuk I; Sukhishvili S; Busscher HJ; van der Mei HC; Choi CH ACS Appl Mater Interfaces; 2015 Sep; 7(36):20304-13. PubMed ID: 26305913 [TBL] [Abstract][Full Text] [Related]
30. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Han Y; Chen D; Sun J; Zhang Y; Xu K Acta Biomater; 2008 Sep; 4(5):1518-29. PubMed ID: 18430620 [TBL] [Abstract][Full Text] [Related]
31. Preparation of BMP-2/chitosan/hydroxyapatite antibacterial bio-composite coatings on titanium surfaces for bone tissue engineering. Wang X; Li B; Zhang C Biomed Microdevices; 2019 Oct; 21(4):89. PubMed ID: 31655887 [TBL] [Abstract][Full Text] [Related]
32. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Jia Z; Xiu P; Li M; Xu X; Shi Y; Cheng Y; Wei S; Zheng Y; Xi T; Cai H; Liu Z Biomaterials; 2016 Jan; 75():203-222. PubMed ID: 26513414 [TBL] [Abstract][Full Text] [Related]
33. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO Bhardwaj G; Webster TJ Int J Nanomedicine; 2017; 12():363-369. PubMed ID: 28123296 [TBL] [Abstract][Full Text] [Related]
34. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Bumgardner JD; Wiser R; Elder SH; Jouett R; Yang Y; Ong JL J Biomater Sci Polym Ed; 2003; 14(12):1401-9. PubMed ID: 14870943 [TBL] [Abstract][Full Text] [Related]
35. In vitro response to alkaline phosphatase coatings immobilized onto titanium implants using electrospray deposition or polydopamine-assisted deposition. Nijhuis AW; van den Beucken JJ; Jansen JA; Leeuwenburgh SC J Biomed Mater Res A; 2014 Apr; 102(4):1102-9. PubMed ID: 23640792 [TBL] [Abstract][Full Text] [Related]
36. Antimicrobial and osteogenic properties of a hydrophilic-modified nanoscale hydroxyapatite coating on titanium. Murakami A; Arimoto T; Suzuki D; Iwai-Yoshida M; Otsuka F; Shibata Y; Igarashi T; Kamijo R; Miyazaki T Nanomedicine; 2012 Apr; 8(3):374-82. PubMed ID: 21782779 [TBL] [Abstract][Full Text] [Related]
37. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Geng Z; Wang R; Zhuo X; Li Z; Huang Y; Ma L; Cui Z; Zhu S; Liang Y; Liu Y; Bao H; Li X; Huo Q; Liu Z; Yang X Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():852-861. PubMed ID: 27987782 [TBL] [Abstract][Full Text] [Related]
38. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Feng B; Weng J; Yang BC; Qu SX; Zhang XD Biomaterials; 2004 Aug; 25(17):3421-8. PubMed ID: 15020115 [TBL] [Abstract][Full Text] [Related]
39. A novel antibacterial modification treatment of titanium capable to improve osseointegration. Della Valle C; Visai L; Santin M; Cigada A; Candiani G; Pezzoli D; Arciola CR; Imbriani M; Chiesa R Int J Artif Organs; 2012 Oct; 35(10):864-75. PubMed ID: 23138702 [TBL] [Abstract][Full Text] [Related]
40. The influence of surface modification on bacterial adhesion to titanium-based substrates. Lorenzetti M; Dogša I; Stošicki T; Stopar D; Kalin M; Kobe S; Novak S ACS Appl Mater Interfaces; 2015 Jan; 7(3):1644-51. PubMed ID: 25543452 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]