These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38542486)

  • 1. Mlp4green: A Binary Classification Approach Specifically for Green Odor.
    Yang J; Qian Z; He Y; Liu M; Li W; Han W
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting odor profile of food from its chemical composition: Towards an approach based on artificial intelligence and flavorists expertise.
    Perrot NM; Roche A; Tonda A; Lutton E; Thomas-Danguin T
    Math Biosci Eng; 2023 Nov; 20(12):20528-20552. PubMed ID: 38124564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the Structure-Odor Relationship of Molecules: A Computational Study Based on Deep Learning.
    Bo W; Yu Y; He R; Qin D; Zheng X; Wang Y; Ding B; Liang G
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting odor from molecular structure: a multi-label classification approach.
    Saini K; Ramanathan V
    Sci Rep; 2022 Aug; 12(1):13863. PubMed ID: 35974078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine-Learning-Based Olfactometer: Prediction of Odor Perception from Physicochemical Features of Odorant Molecules.
    Shang L; Liu C; Tomiura Y; Hayashi K
    Anal Chem; 2017 Nov; 89(22):11999-12005. PubMed ID: 29027463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Machine Learning for Fenceline Monitoring of Odor Classes and Concentrations at a Wastewater Treatment Plant.
    Cangialosi F; Bruno E; De Santis G
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing molecular representations, e-nose signals, and other featurization, for learning to smell aroma molecules.
    Debnath T; Badreddine S; Kumari P; Spranger M
    PLoS One; 2023; 18(8):e0289881. PubMed ID: 37566580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of artificial intelligence to decode the relationships between smell, olfactory receptors and small molecules.
    Achebouche R; Tromelin A; Audouze K; Taboureau O
    Sci Rep; 2022 Nov; 12(1):18817. PubMed ID: 36335231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of sensing data to realize intended odor impression using mass spectrum of odor mixture.
    Hasebe D; Alexandre M; Nakamoto T
    PLoS One; 2022; 17(8):e0273011. PubMed ID: 35976921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction for odor gas generation from domestic waste based on machine learning.
    Jiang Y; Huang J; Luo W; Chen K; Yu W; Zhang W; Huang C; Yang J; Huang Y
    Waste Manag; 2023 Feb; 156():264-271. PubMed ID: 36508910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Odor discrimination is immune to the effects of verbal labels.
    Cormiea S; Fischer J
    Sci Rep; 2023 Jan; 13(1):1742. PubMed ID: 36720925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving Olfactory Expertise: Training for Transfer in Odor Identification.
    Morquecho-Campos P; Larsson M; Boesveldt S; Olofsson JK
    Chem Senses; 2019 Mar; 44(3):197-203. PubMed ID: 30715223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of odor complaints at a large composite reservoir in a highly urbanized area: A machine learning approach.
    Mulrow J; Kshetry N; Brose DA; Kumar K; Jain D; Shah M; Kunetz TE; Varshney LR
    Water Environ Res; 2020 Mar; 92(3):418-429. PubMed ID: 31386777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceptual metrics for odorants: Learning from non-expert similarity feedback using machine learning.
    Kumari P; Besold T; Spranger M
    PLoS One; 2023; 18(11):e0291767. PubMed ID: 37939067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data based predictive models for odor perception.
    Chacko R; Jain D; Patwardhan M; Puri A; Karande S; Rai B
    Sci Rep; 2020 Oct; 10(1):17136. PubMed ID: 33051564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting human olfactory perception from chemical features of odor molecules.
    Keller A; Gerkin RC; Guan Y; Dhurandhar A; Turu G; Szalai B; Mainland JD; Ihara Y; Yu CW; Wolfinger R; Vens C; Schietgat L; De Grave K; Norel R; ; Stolovitzky G; Cecchi GA; Vosshall LB; Meyer P
    Science; 2017 Feb; 355(6327):820-826. PubMed ID: 28219971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting human odor perception represented by continuous values from mass spectra of essential oils resembling chemical mixtures.
    Debnath T; Nakamoto T
    PLoS One; 2020; 15(6):e0234688. PubMed ID: 32559255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting individual perceptual scent impression from imbalanced dataset using mass spectrum of odorant molecules.
    Debnath T; Nakamoto T
    Sci Rep; 2022 Mar; 12(1):3778. PubMed ID: 35260669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification.
    Vanarse A; Espinosa-Ramos JI; Osseiran A; Rassau A; Kasabov N
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning to predict target location with turbulent odor plumes.
    Rigolli N; Magnoli N; Rosasco L; Seminara A
    Elife; 2022 Aug; 11():. PubMed ID: 35959726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.