These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38542548)

  • 21. Glenohumeral joint trajectory tracking for improving the shoulder compliance of the upper limb rehabilitation robot.
    Tang Y; Hao D; Cao C; Shi P; Yu H; Luan X; Fang F
    Med Eng Phys; 2023 Mar; 113():103961. PubMed ID: 36966005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training.
    Liu Y; Li C; Ji L; Bi S; Zhang X; Huo J; Ji R
    J Healthc Eng; 2017; 2017():4931217. PubMed ID: 29065614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation.
    Yang T; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research on Current Drive System of Magnetorheological Damper Based on Fuzzy PI Control.
    Li W; Liang H; Xia D; Fu J; Luo L; Yu M
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and Validation of a Lower-Limb Haptic Rehabilitation Robot.
    Dawson-Elli AR; Adamczyk PG
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1584-1594. PubMed ID: 32634097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust adaptive PD-like control of lower limb rehabilitation robot based on human movement data.
    Hu N; Wang A; Wu Y
    PeerJ Comput Sci; 2021; 7():e394. PubMed ID: 33817040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot.
    Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot].
    Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive Learning based Upper-Limb Rehabilitation Training System with Collaborative Robot.
    Lim JH; He K; Yi Z; Hou C; Zhang C; Sui Y; Li L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Analysis of an Upper Limb Rehabilitation Robot Based on Multimodal Control.
    Ren H; Liu T; Wang J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.
    Shi K; Song A; Li Y; Li H; Chen D; Zhu L
    Front Neurorobot; 2021; 15():664062. PubMed ID: 33897402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation.
    Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z
    Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive force regulation of muscle strengthening rehabilitation device with magnetorheological fluids.
    Dong S; Lu KQ; Sun JQ; Rudolph K
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):55-63. PubMed ID: 16562632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research on adaptive impedance control technology of upper limb rehabilitation robot based on impedance parameter prediction.
    Zhang Y; Li T; Tao H; Liu F; Hu B; Wu M; Yu H
    Front Bioeng Biotechnol; 2023; 11():1332689. PubMed ID: 38234302
    [No Abstract]   [Full Text] [Related]  

  • 40. Sliding Mode Tracking Control of a Wire-Driven Upper-Limb Rehabilitation Robot with Nonlinear Disturbance Observer.
    Niu J; Yang Q; Wang X; Song R
    Front Neurol; 2017; 8():646. PubMed ID: 29255442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.