These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38542604)

  • 1. Recent Progress in Flexible Surface Acoustic Wave Sensing Technologies.
    Liang C; Yan C; Zhai S; Wang Y; Hu A; Wang W; Pan Y
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAW Sensors for Chemical Vapors and Gases.
    Devkota J; Ohodnicki PR; Greve DW
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28397760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving consistency of flexible surface acoustic wave sensors with artificial intelligence.
    Ji Z; Zhou J; Guo Y; Xia Y; Abkar A; Liang D; Fu Y
    Microsyst Nanoeng; 2024; 10():94. PubMed ID: 38974058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in the Topologies of the Surface Acoustic Wave Sensors and the Corresponding Electronic Processing Circuits.
    Aleksandrova M; Badarov D
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications.
    Mandal D; Banerjee S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive Materials Used in Surface Acoustic Wave Gas Sensors for Detecting Sulfur-Containing Compounds.
    Wang Y; Yan C; Liang C; Liu Y; Li H; Zhang C; Duan X; Pan Y
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Acoustic Wave Humidity Sensor: A Review.
    Memon MM; Liu Q; Manthar A; Wang T; Zhang W
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-High Frequency Surface Acoustic Wave Sensors for Temperature Detection.
    Dong Q; Yang Q; Liu X; Hu S; Nie W; Jiang Z; Fan X; Luo J; Tao R; Fu C
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Surface Acoustic Wave-Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films.
    Choi KH; Kim HB; Ali K; Sajid M; Uddin Siddiqui G; Chang DE; Kim HC; Ko JB; Dang HW; Doh YH
    Sci Rep; 2015 Oct; 5():15178. PubMed ID: 26478189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin Glass-Based Flexible, Transparent, and Ultrasensitive Surface Acoustic Wave Humidity Sensor with ZnO Nanowires and Graphene Quantum Dots.
    Wu J; Yin C; Zhou J; Li H; Liu Y; Shen Y; Garner S; Fu Y; Duan H
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39817-39825. PubMed ID: 32805852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser Processed Hybrid Lead-Free Thin Films for SAW Sensors.
    Enea N; Ion V; Viespe C; Constantinoiu I; Buiu O; Romanitan C; Scarisoreanu ND
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface acoustic wave-based ultraviolet photodetectors: a review.
    Zhang Y; Cai Y; Zhou J; Xie Y; Xu Q; Zou Y; Guo S; Xu H; Sun C; Liu S
    Sci Bull (Beijing); 2020 Apr; 65(7):587-600. PubMed ID: 36659190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High sensitivity flexible Lamb-wave humidity sensors with a graphene oxide sensing layer.
    Xuan W; He X; Chen J; Wang W; Wang X; Xu Y; Xu Z; Fu YQ; Luo JK
    Nanoscale; 2015 Apr; 7(16):7430-6. PubMed ID: 25828865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance SAW Low Temperature Sensors with Double Electrode Transducers Based on 128° YX LiNbO
    Zhu J; Wang H; Zhang F; Ding Q
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible thin-film acoustic wave devices with off-axis bending characteristics for multisensing applications.
    Ji Z; Zhou J; Lin H; Wu J; Zhang D; Garner S; Gu A; Dong S; Fu Y; Duan H
    Microsyst Nanoeng; 2021; 7():97. PubMed ID: 34900331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive wireless MEMS microphones for biomedical applications.
    Sezen AS; Sivaramakrishnan S; Hur S; Rajamani R; Robbins W; Nelson BJ
    J Biomech Eng; 2005 Nov; 127(6):1030-4. PubMed ID: 16438245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors.
    Feng Y; Yu H; Liu W; Hu K; Sun S; Yang Z; Wang B
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.
    Mujahid A; Dickert FL
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scattering Matrix Approach to Design of One-Port Surface Acoustic Wave Resonator Sensors Utilizing Reflectors as Sensing Element.
    Kesuma HP; Ramakrishnan N; Lan BL; Dhillon AS; Achath Mohanan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1418-1429. PubMed ID: 33064646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Performance of Surface Acoustic Wave Sensors by Plasma Treatments for Chemical Warfare Agents Monitoring.
    Kim E; Kim J; Ha S; Song C; Kim JH
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7145-7150. PubMed ID: 32604573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.