These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38542613)

  • 1. Single-Ended Eddy Current Micro-Displacement Sensor with High Precision Based on Temperature Compensation.
    Xu Z; Feng Y; Liu Y; Shi F; Ge Y; Liu H; Cao W; Zhou H; Geng S; Lin W
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wide Temperature Range and Low Temperature Drift Eddy Current Displacement Sensor Using Digital Correlation Demodulation.
    Ma T; Han Y; Xu Y; Dai P; Shen H; Liu Y
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Analysis of Small Size Eddy Current Displacement Sensor.
    Wang SC; Xie BR; Huang SM
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit.
    Yao Z; Liang T; Jia P; Hong Y; Qi L; Lei C; Zhang B; Xiong J
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence and Compensation Method of Eccentricity for Cylindrical Specimens in Eddy Current Displacement Measurement.
    Zhan H; Wang L; Wang T; Yu J
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eddy Current Position Measurement in Harsh Environments: A Temperature Compensation and Calibration Approach.
    Gruber G; Schweighofer B; Berger M; Leitner T; Kloesch G; Wegleiter H
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Precision Bandgap Reference with Chopper Stabilization and V-Curve Compensation Technique.
    Chen E; Wu T; Yu J; Yin L
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Accurate, Polynomial-Based Digital Temperature Compensation for Piezoresistive Pressure Sensor in 180 nm CMOS Technology.
    Ali I; Asif M; Shehzad K; Rehman MRU; Kim DG; Rikan BS; Pu Y; Yoo SS; Lee KY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32937979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling Interference between Eddy Current Sensors for the Radial Displacement Measurement of a Cylindrical Target.
    Zhang W; Bu J; Li D; Zhang K; Zhou M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on Coil Impedance of Self-Inductive Displacement Sensor Considering Core Eddy Current.
    Ren Z; Li H; Yu W
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synchronous demodulation technology based on sample-and-hold for eddy current sensors.
    Zhao GF; Wu L; Feng ZL; Zhang Y; Ni JJ; Feng ZH
    Rev Sci Instrum; 2021 Nov; 92(11):115003. PubMed ID: 34852548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CMOS PSR Enhancer with 87.3 mV PVT-Insensitive Dropout Voltage for Sensor Circuits.
    Zhang J; Chan PK
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement.
    Zhang S; Yan L; Chen B; Xu Z; Xie J
    Opt Express; 2017 Jan; 25(1):472-485. PubMed ID: 28085841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Temperature Drift Compensation Method for Pulsed Eddy Current Technology.
    Lei B; Yi P; Li Y; Xiang J
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29914138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High-Precision Current-Mode Bandgap Reference with Nonlinear Temperature Compensation.
    Chen Z; Wang Q; Li X; Song S; Chen H; Song Z
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.
    Sánchez Moreno J; Ramírez Muñoz D; Cardoso S; Casans Berga S; Navarro Antón AE; Peixeiro de Freitas PJ
    Sensors (Basel); 2011; 11(3):2447-58. PubMed ID: 22163748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-precision micro-displacement sensor based on tunnel magneto-resistance effect.
    Wang X; Li W; Jin L; Gong M; Wang J; Zhong Y; Ruan Y; Guo C; Xin C; Li M
    Sci Rep; 2022 Feb; 12(1):3021. PubMed ID: 35194114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Accuracy Calibration Based on Linearity Adjustment for Eddy Current Displacement Sensor.
    Liu W; Liang B; Jia Z; Feng D; Jiang X; Li X; Zhou M
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30154354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-Plasmon-Resonance-Based Optical-Fiber Micro-Displacement Sensor with Temperature Compensation.
    Wei Y; Wu P; Zhu Z; Liu L; Liu C; Hu J; Wang S; Zhang Y
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature compensation in fluid density measurement using micro-electromechanical resonant sensor.
    Zhao L; Huang L; Hu Y; Jiang W; Lu D; Li Z; Zhou X; Wang J
    Rev Sci Instrum; 2018 Dec; 89(12):125001. PubMed ID: 30599598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.