These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38542666)
1. Numerical Simulation of the Influence of Non-Uniform Han Y; Zhao W Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542666 [TBL] [Abstract][Full Text] [Related]
2. Electrokinetic-vortex formation near a two-part cylinder with same-sign zeta potentials in a straight microchannel. Wang C; Song Y; Pan X Electrophoresis; 2020 Jun; 41(10-11):793-801. PubMed ID: 32012307 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear instability of developing streamwise vortices with applications to boundary layer heat transfer intensification through an extended Reynolds analogy. Liu JT Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2699-716. PubMed ID: 18495623 [TBL] [Abstract][Full Text] [Related]
4. Two-Dimensional Electromagnetohydrodynamic (EMHD) Flows of Fractional Viscoelastic Fluids with Electrokinetic Effects. Tian K; An S; Zhao G; Ding Z Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234463 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear dependence (on ionic strength, pH) of surface charge density and zeta potential in microchannel electrokinetic flow. Chen D; Arancibia-Miranda N; Escudey M; Fu J; Lu Q; Amon CH; Galatro D; Guzmán AM Heliyon; 2023 Oct; 9(10):e20888. PubMed ID: 37876474 [TBL] [Abstract][Full Text] [Related]
6. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow. Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900 [TBL] [Abstract][Full Text] [Related]
7. Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics. Suryanarayanan S; Narasimha R; Hari Dass ND Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013009. PubMed ID: 24580322 [TBL] [Abstract][Full Text] [Related]
8. Evolution of turbulent spots in a parallel shear flow. Schumacher J; Eckhardt B Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046307. PubMed ID: 11308945 [TBL] [Abstract][Full Text] [Related]
9. Electroviscous effect on fluid drag in a microchannel with large zeta potential. Jing D; Bhushan B Beilstein J Nanotechnol; 2015; 6():2207-16. PubMed ID: 26734512 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Electroviscous Effect for Flow of Micropolar Fluids in a Nanochannel with Overlapping Electric Double Layers at High Zeta Potential. Banerjee D; Pati S; Biswas P Langmuir; 2024 Oct; 40(40):21128-21138. PubMed ID: 39344783 [TBL] [Abstract][Full Text] [Related]
12. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review. Jing D; Bhushan B J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432 [TBL] [Abstract][Full Text] [Related]
13. Electrokinetic motion of a spherical micro particle at an oil-water interface in microchannel. Wang C; Li M; Song Y; Pan X; Li D Electrophoresis; 2018 Mar; 39(5-6):807-815. PubMed ID: 28926100 [TBL] [Abstract][Full Text] [Related]
14. Revisiting the Hetero-Interface of Electrolyte/2D Materials in an Electric Double Layer Device. Hu X; Jiang H; Lu LX; Zhao SX; Li Y; Zhen L; Xu CY Small; 2023 Oct; 19(43):e2301798. PubMed ID: 37357158 [TBL] [Abstract][Full Text] [Related]
15. Analysis of streaming potential flow and electroviscous effect in a shear-driven charged slit microchannel. Riad A; Khorshidi B; Sadrzadeh M Sci Rep; 2020 Oct; 10(1):18317. PubMed ID: 33110227 [TBL] [Abstract][Full Text] [Related]
16. Interfacial Electric Effects on a Non-Isothermal Electroosmotic Flow in a Microcapillary Tube Filled by Two Immiscible Fluids. Matías A; Méndez F; Bautista O Micromachines (Basel); 2017 Jul; 8(8):. PubMed ID: 30400424 [TBL] [Abstract][Full Text] [Related]
17. Polymer adsorption and electrokinetic potential of dispersed particles in weak and strong electric fields. Barany S Adv Colloid Interface Sci; 2015 Aug; 222():58-69. PubMed ID: 25456453 [TBL] [Abstract][Full Text] [Related]
18. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction. Luo K; Hu C; Wu F; Fan J Phys Fluids (1994); 2017 May; 29(5):053301. PubMed ID: 29104418 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the Molecular Interface and Boundary Problems in an Electrical Double Layer and Electroosmotic Flow. Masuduzzaman M; Kim B Langmuir; 2022 Jun; 38(23):7244-7255. PubMed ID: 35622400 [TBL] [Abstract][Full Text] [Related]
20. A method to determine zeta potential and Navier slip coefficient of microchannels. Park HM J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]