These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38542868)

  • 21. Fuel Aromaticity Promotes Low-Temperature Nucleation Processes of Elemental Carbon from Biomass and Coal Combustion.
    Han Y; Chen Y; Feng Y; Shang Y; Li J; Li Q; Chen J
    Environ Sci Technol; 2021 Feb; 55(4):2532-2540. PubMed ID: 33529529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alteration behavior of mineral structure and hazardous elements during combustion of coal from a power plant at Huainan, Anhui, China.
    Tang Q; Sheng W; Li L; Zheng L; Miao C; Sun R
    Environ Pollut; 2018 Aug; 239():768-776. PubMed ID: 29729618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Organic Sulfur on Low-Temperature Oxidation of Coal and its Transition Characteristics.
    Gao F; Jia Z; Shan YF; Teng Y; Li YD; Pu XG
    ACS Omega; 2022 Nov; 7(44):39830-39839. PubMed ID: 36385873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Functional Groups in Coal with Different Vitrinite/Inertinite Ratios on Pyrolysis Products.
    Wang A; Huang J; Zhao M; Liu Y; Cao D; Wei Y; Wei L
    ACS Omega; 2023 May; 8(20):18202-18211. PubMed ID: 37251182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Nanostructure Evolution in Coal Molecules of Different Ranks.
    Meng J; Zhong R; Niu J; Li S; Nie B
    J Nanosci Nanotechnol; 2021 Jan; 21(1):405-421. PubMed ID: 33213640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of Long-Term Immersion in Water at Different Temperatures on Spontaneous Combustion Characteristics of Coal.
    Zhang Z; Dong Z; Kong S; Liu X
    ACS Omega; 2023 Sep; 8(35):31683-31697. PubMed ID: 37692211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research on chemical resistance characteristics of water-immersed coal with different metamorphic degrees.
    Zhang X; Zhao M; Yang J; Lu B; Wang G; Dai F
    Sci Rep; 2022 Aug; 12(1):13781. PubMed ID: 35962023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Coal Combustion Reactivity of Different Metamorphic Degree and Structure Changes of FTIR Analysis in Pyrolysis Process].
    Li N; Liu QS; Zhen M; Zhao B; Feng W; Song YM; Zhi KD; He RX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2760-5. PubMed ID: 30084591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental investigation on spontaneous combustion oxidation characteristics and stages of coal with different metamorphic degrees.
    Nie B; Yan H; Liu P; Chen Z; Peng C; Wang X; Yin F; Gong J; Wei Y; Lin S; Gao Q; Cao M
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):8269-8279. PubMed ID: 36053423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Characterization and Molecular Model Construction of High-Ash Coal from Northern China.
    Zhu B; Dong X; Fan Y; Ma X; Yao S; Fu Y; Chen R; Chang M
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CO2 emission of coal spontaneous combustion and its relation with coal microstructure, China.
    Wang H; Chen Chen ; Huang T; Gao W
    J Environ Biol; 2015 Jul; 36(4):1017-24. PubMed ID: 26364484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Source profiles of molecular structure and light absorption of PM
    Zhang Q; Li Z; Shen Z; Zhang T; Zhang Y; Sun J; Zeng Y; Xu H; Wang Q; Hang Ho SS; Cao J
    Environ Pollut; 2022 Apr; 299():118866. PubMed ID: 35077839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy.
    Jiang J; Zhang S; Longhurst P; Yang W; Zheng S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119724. PubMed ID: 33784595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Chemical and Alignment Structural Properties of Coal: Insights from Raman, Solid-State
    Li S; Zhu Y; Wang Y; Liu J
    ACS Omega; 2021 May; 6(17):11266-11279. PubMed ID: 34056282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study on the Oxidation Kinetics and Microreactivity of Water-Immersed Coal.
    Huang Z; Tian Y; Gao Y; Shao Z; Zhang Y; Liu X
    ACS Omega; 2020 Jul; 5(28):17287-17303. PubMed ID: 32715214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study on the prediction method of coal spontaneous combustion development period based on critical temperature.
    Qu L
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35748-35760. PubMed ID: 30357672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on the inhibitory mechanism of dehydrogenated antioxidants on coal spontaneous combustion.
    Zhang X; Yu C; Lu B; Gao F; Shan C; Zou J
    Sci Rep; 2022 Dec; 12(1):21237. PubMed ID: 36482182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative Analyses between Raw and Preoxidized Pulverized Coals: Combustion Behaviors and Thermokinetic and Microcharacteristics.
    Zou L; Wang Y; Bai Y; Liu Y; Zhao Q
    ACS Omega; 2022 Jan; 7(1):1121-1131. PubMed ID: 35036775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution behavior of mineral structure and trace elements in feed coals from six coal-fired power plants in China.
    Wang J; Yan R; Liu Z; Wang J; Zhang P
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):85759-85771. PubMed ID: 37391565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.