BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 38543086)

  • 21. Comparison of iron oxide nanoparticle and microwave hyperthermia alone or combined with cisplatinum in murine breast tumors.
    Petryk AA; Stigliano RV; Giustini AJ; Gottesman RE; Trembly BS; Kaufman PA; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():. PubMed ID: 24386533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
    Le TA; Hadadian Y; Yoon J
    Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT.
    Giustini AJ; Petryk AA; Cassim SM; Tate JA; Baker I; Hoopes PJ
    Nano Life; 2010 Mar; 1(1n02):. PubMed ID: 24348868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.
    Lanier OL; Korotych OI; Monsalve AG; Wable D; Savliwala S; Grooms NWF; Nacea C; Tuitt OR; Dobson J
    Int J Hyperthermia; 2019; 36(1):687-701. PubMed ID: 31340687
    [No Abstract]   [Full Text] [Related]  

  • 26. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.
    Sanz B; Calatayud MP; Torres TE; Fanarraga ML; Ibarra MR; Goya GF
    Biomaterials; 2017 Jan; 114():62-70. PubMed ID: 27846403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autophagy inhibition mediated via an injectable and NO-releasing hydrogel for amplifying the antitumor efficacy of mild magnetic hyperthermia.
    Wang Y; Chen X; Chen Z; Wang X; Wang H; Zhai H; Ding J; Yu L
    Bioact Mater; 2024 Sep; 39():336-353. PubMed ID: 38827171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative heating efficiency and cytotoxicity of magnetic silica nanoparticles for magnetic hyperthermia treatment on human breast cancer cells.
    Acar M; Solak K; Yildiz S; Unver Y; Mavi A
    3 Biotech; 2022 Nov; 12(11):313. PubMed ID: 36276464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advancements in manganite perovskites and spinel ferrite-based magnetic nanoparticles for biomedical theranostic applications.
    Kandasamy G
    Nanotechnology; 2019 Dec; 30(50):502001. PubMed ID: 31469103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyperthermia treatment advances for brain tumors.
    Skandalakis GP; Rivera DR; Rizea CD; Bouras A; Jesu Raj JG; Bozec D; Hadjipanayis CG
    Int J Hyperthermia; 2020 Jul; 37(2):3-19. PubMed ID: 32672123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model.
    Afzalipour R; Khoei S; Khoee S; Shirvalilou S; Raoufi NJ; Motevalian M; Karimi MY
    Nanomedicine; 2021 Jan; 31():102319. PubMed ID: 33068745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fe
    Lu Q; Dai X; Zhang P; Tan X; Zhong Y; Yao C; Song M; Song G; Zhang Z; Peng G; Guo Z; Ge Y; Zhang K; Li Y
    Int J Nanomedicine; 2018; 13():2491-2505. PubMed ID: 29719396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis.
    Chen X; Wang H; Shi J; Chen Z; Wang Y; Gu S; Fu Y; Huang J; Ding J; Yu L
    Biomaterials; 2023 Jul; 298():122139. PubMed ID: 37148756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields.
    Yang CT; Korangath P; Stewart J; Hu C; Fu W; Grüttner C; Beck SE; Lin FH; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):59-75. PubMed ID: 33426997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy.
    Shubitidze F; Kekalo K; Stigliano R; Baker I
    J Appl Phys; 2015 Mar; 117(9):094302. PubMed ID: 25825545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.
    Shah RR; Dombrowsky AR; Paulson AL; Johnson MP; Nikles DE; Brazel CS
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():18-29. PubMed ID: 27523991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies.
    Shivanna AT; Dash BS; Chen JP
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors.
    Giustini AJ; Petryk AA; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():. PubMed ID: 24392200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
    Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ
    Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.
    Piao D; Towner RA; Smith N; Chen WR
    Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.