BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38543434)

  • 1. Colorimetric Indicator Based on Gold Nanoparticles and Sodium Alginate for Monitoring Fish Spoilage.
    Pierre L; Bruna Bugueño JE; Leyton Bongiorno PA; Torres Mediano A; Rodríguez-Mercado FJ
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a novel colorimetric sensor based on alginate beads for monitoring rainbow trout spoilage.
    Majdinasab M; Hosseini SMH; Sepidname M; Negahdarifar M; Li P
    J Food Sci Technol; 2018 May; 55(5):1695-1704. PubMed ID: 29666522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerogel colorimetric label sensors based on carboxymethyl cellulose/sodium alginate with black goji anthocyanin for monitoring fish freshness.
    Zhang K; Li Z; Zhao W; Guo J; Hashim SBH; Khan S; Shi J; Huang X; Zou X
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130466. PubMed ID: 38432274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex Detection of Biogenic Amines for Meat Freshness Monitoring Using Nanoplasmonic Colorimetric Sensor Array.
    Abbasi-Moayed S; Orouji A; Hormozi-Nezhad MR
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel biogenic gold nanoparticles stabilized on poly(styrene-co-maleic anhydride) as an effective material for reduction of nitrophenols and colorimetric detection of Pb(II).
    Nguyen THA; Le TTV; Huynh BA; Nguyen NV; Le VT; Doan VD; Tran VA; Nguyen AT; Cao XT; Vasseghian Y
    Environ Res; 2022 Sep; 212(Pt B):113281. PubMed ID: 35461847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric ammonia (NH
    Sutthasupa S; Padungkit C; Suriyong S
    Food Chem; 2021 Nov; 362():130151. PubMed ID: 34087707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogenic amines- and sulfides-responsive gold nanoparticles for real-time visual detection of raw meat, fish, crustaceans, and preserved meat.
    Chow CF
    Food Chem; 2020 May; 311():125908. PubMed ID: 31753679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-Aminophenylboronic Acid Conjugation on Responsive Polymer and Gold Nanoparticles for Qualitative Bacterial Detection.
    Wikantyasning ER; Da'i M; Cholisoh Z; Kalsum U
    J Pharm Bioallied Sci; 2023; 15(2):81-87. PubMed ID: 37469647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanodiamonds conjugated to gold nanoparticles for colorimetric detection of clenbuterol and chromium(III) in urine.
    Shellaiah M; Simon T; Venkatesan P; Sun KW; Ko FH; Wu SP
    Mikrochim Acta; 2017 Dec; 185(1):74. PubMed ID: 29594526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioglycolic acid-modified AuNPs as a colorimetric sensor for the rapid determination of the pesticide chlorpyrifos.
    Zhang H; Qu Y; Zhang Y; Yan Y; Gao H
    Anal Methods; 2022 May; 14(20):1996-2002. PubMed ID: 35535744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-friendly and enhanced colorimetric detection of aluminum ions using pectin-rich apple extract-based gold nanoparticles.
    Park H; Kim W; Kim M; Lee G; Lee W; Park J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118880. PubMed ID: 32916424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a pH-sensing indicator for shrimp freshness monitoring: Curcumin and anthocyanin-loaded gelatin films.
    Mohseni-Shahri FS; Moeinpour F
    Food Sci Nutr; 2023 Jul; 11(7):3898-3910. PubMed ID: 37457176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogenic gold nanoparticles for reduction of 4-nitrophenol to 4-aminophenol: an eco-friendly bioremediation.
    Nabikhan A; Rathinam S; Kandasamy K
    IET Nanobiotechnol; 2018 Jun; 12(4):479-483. PubMed ID: 29768233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picomolar level sensorial dual colorimetric gold nanoparticle sensor for Zn
    Bhattacharyya M; Hossain M
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123682. PubMed ID: 38042120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO; Wang YC; Gunasekaran S
    J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric sensor for cimetidine detection in human urine based on d-xylose protected gold nanoparticles.
    Hu F; Wu P; Wang R; Liu W; He H
    Analyst; 2018 May; 143(10):2369-2376. PubMed ID: 29696278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric porous microspheres of natural sodium alginate for chilled pork visual monitoring.
    Yun X; Chen W; Zhang J; Dong T
    Int J Biol Macromol; 2023 Mar; 230():123198. PubMed ID: 36623625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold Nanoparticles as a Direct and Rapid Sensor for Sensitive Analytical Detection of Biogenic Amines.
    El-Nour KMA; Salam ETA; Soliman HM; Orabi AS
    Nanoscale Res Lett; 2017 Dec; 12(1):231. PubMed ID: 28359140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins.
    Yang Y; Yu X; Zhu Y; Zeng Y; Fang C; Liu Y; Hu S; Ge Y; Jiang W
    Food Chem; 2022 Nov; 393():133342. PubMed ID: 35661468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Antibody-Conjugated Gold and Magnetic Nanocomposites for the Colorimetric Detection of Influenza A Virus.
    Ye L; Zhang X; Yang N; Zhao S; Wang H; Wang Z
    J Biomed Nanotechnol; 2021 Apr; 17(4):606-614. PubMed ID: 35057887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.