These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38543663)

  • 1. Impact of Zero-Valent Iron Nanoparticles and Ampicillin on Adenosine Triphosphate and Lactate Metabolism in the Cyanobacterium
    Yalcin YS; Aydin BN; Sitther V
    Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid production and cellular changes in Fremyella diplosiphon exposed to nanoscale zerovalent iron nanoparticles and ampicillin.
    Yalcin YS; Aydin B; Chen H; Gichuki S; Sitther V
    Microb Cell Fact; 2023 Jun; 22(1):108. PubMed ID: 37280676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero-Valent Iron Nanoparticles Induce Reactive Oxygen Species in the Cyanobacterium,
    Gichuki SM; Yalcin YS; Wyatt L; Ghann W; Uddin J; Kang H; Sitther V
    ACS Omega; 2021 Dec; 6(48):32730-32738. PubMed ID: 34901621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Ascorbic Acid on Zero-Valent Iron Nanoparticle and UV-B Mediated Stress in the Cyanobacterium,
    Wyatt L; Gichuki S; Yalcin YS; Sitther V
    Microorganisms; 2023 May; 11(5):. PubMed ID: 37317219
    [No Abstract]   [Full Text] [Related]  

  • 5. Impact of Zero-Valent Iron Nanoparticles on
    Fathabad SG; Tabatabai B; Walker D; Chen H; Lu J; Aslan K; Uddin J; Ghann W; Sitther V
    ACS Omega; 2020 Jun; 5(21):12166-12173. PubMed ID: 32548398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic-Induced Changes in Pigment Accumulation, Photosystem II, and Membrane Permeability in a Model Cyanobacterium.
    Yalcin YS; Aydin BN; Sayadujjhara M; Sitther V
    Front Microbiol; 2022; 13():930357. PubMed ID: 35814666
    [No Abstract]   [Full Text] [Related]  

  • 7. In vivo study of chelating agent-modified nano zero-valent iron: Biodistribution and toxicity in mice.
    Hou M; Liu L; Zhang Y; Pan Y; Ding N; Zhang Y
    Water Res; 2024 Jun; 257():121649. PubMed ID: 38718655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploratory study of removing nutrients from aqueous environments employing a green synthesised nano zero-valent iron.
    Abida O; Van der Graaf F; Li LY
    Environ Technol; 2022 May; 43(13):2017-2032. PubMed ID: 33317431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria.
    Rónavári A; Balázs M; Tolmacsov P; Molnár C; Kiss I; Kukovecz Á; Kónya Z
    Water Res; 2016 May; 95():165-73. PubMed ID: 26994337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of washing solution and drying condition on reactivity of nano-scale zero valent irons (nZVIs) synthesized by borohydride reduction.
    Woo H; Park J; Lee S; Lee S
    Chemosphere; 2014 Feb; 97():146-52. PubMed ID: 24290304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal interference of clay minerals and nanoparticulate zero-valent iron on their interfacial interaction with dissolved organic matter.
    Wang Y; Liu Y; Yang K; Lin D
    Sci Total Environ; 2020 Oct; 739():140372. PubMed ID: 32758974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nanoscale zero-valent iron confined in mesostructure on Escherichia coli.
    Sun X; Yan Y; Wang M; Han Z
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):24038-24045. PubMed ID: 28913810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen.
    Machado S; Stawiński W; Slonina P; Pinto AR; Grosso JP; Nouws HP; Albergaria JT; Delerue-Matos C
    Sci Total Environ; 2013 Sep; 461-462():323-9. PubMed ID: 23738986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of trichloroethylene by biochar supported nano zero-valent iron (BC-nZVI): The role of specific surface area and electrochemical properties.
    Hou D; Cui X; Liu M; Qie H; Tang Y; Leng W; Luo N; Luo H; Lin A; Yang W; Wei W; Zheng T
    Sci Total Environ; 2024 Jan; 908():168341. PubMed ID: 37939947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge.
    Wu D; Shen Y; Ding A; Mahmood Q; Liu S; Tu Q
    J Hazard Mater; 2013 Nov; 262():649-55. PubMed ID: 24121637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon.
    Rohnke BA; Rodríguez Pérez KJ; Montgomery BL
    mBio; 2020 May; 11(3):. PubMed ID: 32457252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal efficiency of hexavalent chromium from wastewater using starch-stabilized nanoscale zero-valent iron.
    Chen H; Xie H; Zhou J; Tao Y; Zhang Y; Zheng Q; Wang Y
    Water Sci Technol; 2019 Sep; 80(6):1076-1084. PubMed ID: 31799951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-mediated Impact on Growth and Fatty Acid Methyl Ester Composition in the Cyanobacterium
    Tabatabai B; Fathabad SG; Bonyi E; Rajini S; Aslan K; Sitther V
    Bioenergy Res; 2019 Jun; 12():409-418. PubMed ID: 31984113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures.
    Kadar E; Rooks P; Lakey C; White DA
    Sci Total Environ; 2012 Nov; 439():8-17. PubMed ID: 23059967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity.
    Sun X; Yan Y; Li J; Han W; Wang L
    J Hazard Mater; 2014 Feb; 266():26-33. PubMed ID: 24374562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.