These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38544040)

  • 1. Self-Mixing Interferometer for Acoustic Measurements through Vibrometric Calibration.
    Chanu-Rigaldies S; Lecomte P; Ollivier S; Castelain T
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of an optical feedback interferometer for acoustic waves measurements.
    Chanu-Rigaldies S; Lecomte P; Ollivier S; Castelain T
    JASA Express Lett; 2023 Oct; 3(10):. PubMed ID: 37819231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation method for the optical feedback factor and linewidth enhancement factor using phase discontinuities in self-mixing interferometry signals.
    Ri CY; Kim CS; Ri GC; Kang JC; Pak CM; O JM
    Appl Opt; 2020 Jan; 59(3):687-693. PubMed ID: 32225204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of vibration and parameters of a semiconductor laser using self-mixing interferometry.
    Gao Y; Yu Y; Xi J; Guo Q
    Appl Opt; 2014 Jul; 53(19):4256-63. PubMed ID: 25089988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of Pressure Wave Observation by Acousto-Optic Sensing Using a Self-Mixing Interferometer.
    Maqueda S; Perchoux J; Tronche C; Imas González JJ; Genetier M; Lavayssière M; Barbarin Y
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of undamped relaxation oscillation in a laser self-mixing interferometry sensing system.
    Liu B; Wang B; Ruan Y; Yu Y
    Opt Express; 2022 Mar; 30(7):11254-11265. PubMed ID: 35473073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring parameters of laser self-mixing interferometry sensor based on back propagation neural network.
    An L; Liu B
    Opt Express; 2022 May; 30(11):19134-19144. PubMed ID: 36221698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fringe Detection and Displacement Sensing for Variable Optical Feedback-Based Self-Mixing Interferometry by Using Deep Neural Networks.
    Siddiqui AA; Zabit U; Bernal OD
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibration reconstruction and optical feedback parameter evaluation based on the direction discrimination in self-mixing interferometry.
    Ri CY; Choe JH; Ri HR; Pak CM; Ri KR; O JM
    Appl Opt; 2021 May; 60(13):3801-3807. PubMed ID: 33983315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-noise optical measurement of sound using midfringe locked interferometer with differential detection.
    Ishikawa K; Shiraki Y; Moriya T; Ishizawa A; Hitachi K; Oguri K
    J Acoust Soc Am; 2021 Aug; 150(2):1514. PubMed ID: 34470317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the feedback parameter of a semiconductor laser with external optical feedback.
    Yu Y; Xi J; Chicharo JF
    Opt Express; 2011 May; 19(10):9582-93. PubMed ID: 21643216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones.
    Yuldashev P; Karzova M; Khokhlova V; Ollivier S; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3314-24. PubMed ID: 26093421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the measurement performance for a self-mixing interferometry-based displacement sensing system.
    Fan Y; Yu Y; Xi J; Chicharo JF
    Appl Opt; 2011 Sep; 50(26):5064-72. PubMed ID: 21946986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic stability analysis for a self-mixing interferometry system.
    Fan Y; Yu Y; Xi J; Guo Q
    Opt Express; 2014 Nov; 22(23):29260-9. PubMed ID: 25402164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid sinusoidal pressure measurement by laser interferometry based on the refractive index of water.
    Yang J; Fan S; Li C; Guo Z; Li B; Shi B
    Appl Opt; 2016 Dec; 55(34):9695-9702. PubMed ID: 27958458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calibration method on distortion-product otoacoustic emission measurements at and around 4 kHz.
    Reuven ML; Neely ST; Kopun JG; Rasetshwane DM; Allen JB; Tan H; Gorga MP
    Ear Hear; 2013; 34(6):779-88. PubMed ID: 24165303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of calibration method on distortion-product otoacoustic emission measurements: II. threshold prediction.
    Rogers AR; Burke SR; Kopun JG; Tan H; Neely ST; Gorga MP
    Ear Hear; 2010 Aug; 31(4):546-54. PubMed ID: 20458245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Bandwidth Heterodyne Laser Interferometer for the Measurement of High-Intensity Focused Ultrasound Pressure.
    Wang K; Xing G; Yang P; Wang M; Wang Z; Tian Q
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA; Reed CM; Robinson SR; Perez ZD
    Ear Hear; 2018; 39(5):946-957. PubMed ID: 29470259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison measurement of nonlinear ultrasonic waves in tubes by a microphone and by an optical interferometric probe.
    Slegrová Z; Bálek R
    Ultrasonics; 2005 Mar; 43(5):315-9. PubMed ID: 15737381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.