These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38544106)

  • 21. A basic investigation into the optimization of cylindrical tubes used as acoustic stethoscopes for auscultation in COVID-19 diagnosis.
    Jiang C; Zhao J; Huang B; Zhu J; Yu J
    J Acoust Soc Am; 2021 Jan; 149(1):66. PubMed ID: 33514153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validity and reliability of acoustic analysis of respiratory sounds in infants.
    Elphick HE; Lancaster GA; Solis A; Majumdar A; Gupta R; Smyth RL
    Arch Dis Child; 2004 Nov; 89(11):1059-63. PubMed ID: 15499065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and Comparative Performance of a Robust Lung Auscultation System for Noisy Clinical Settings.
    McLane I; Emmanouilidou D; West JE; Elhilali M
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2583-2594. PubMed ID: 33534721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implications of clinical variability on computer-aided lung auscultation classification.
    Kala A; McCollum ED; Elhilali M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4421-4425. PubMed ID: 36086501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial intelligence accuracy in detecting pathological breath sounds in children using digital stethoscopes.
    Kevat A; Kalirajah A; Roseby R
    Respir Res; 2020 Sep; 21(1):253. PubMed ID: 32993620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A visual stethoscope to detect the position of the tracheal tube.
    Kato H; Suzuki A; Nakajima Y; Makino H; Sanjo Y; Nakai T; Shiraishi Y; Katoh T; Sato S
    Anesth Analg; 2009 Dec; 109(6):1836-42. PubMed ID: 19923511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple computer-based measurement and analysis system of pulmonary auscultation sounds.
    Polat H; Güler I
    J Med Syst; 2004 Dec; 28(6):665-72. PubMed ID: 15615294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sound differences between electronic and acoustic stethoscopes.
    Nowak LJ; Nowak KM
    Biomed Eng Online; 2018 Aug; 17(1):104. PubMed ID: 30075781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds.
    Chen CH; Huang WT; Tan TH; Chang CC; Chang YJ
    Sensors (Basel); 2015 Jun; 15(6):13132-58. PubMed ID: 26053756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of pathological mechano-acoustic signatures using precision accelerometer contact microphones in patients with pulmonary disorders.
    Gupta P; Wen H; Di Francesco L; Ayazi F
    Sci Rep; 2021 Jun; 11(1):13427. PubMed ID: 34183695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrostatic Acoustic Sensor with an Impedance-Matched Diaphragm Characterized for Body Sound Monitoring.
    Rennoll V; McLane I; Eisape A; Grant D; Hahn H; Elhilali M; West JE
    ACS Appl Bio Mater; 2023 Aug; 6(8):3241-3256. PubMed ID: 37470762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring Microphone Technologies for Digital Auscultation Devices.
    Zauli M; Peppi LM; Di Bonaventura L; Arcobelli VA; Spadotto A; Diemberger I; Coppola V; Mellone S; De Marchi L
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neonatal Heart and Lung Sound Quality Assessment for Robust Heart and Breathing Rate Estimation for Telehealth Applications.
    Grooby E; He J; Kiewsky J; Fattahi D; Zhou L; King A; Ramanathan A; Malhotra A; Dumont GA; Marzbanrad F
    IEEE J Biomed Health Inform; 2021 Dec; 25(12):4255-4266. PubMed ID: 33370240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic analysis of neonatal breath sounds using digital stethoscope technology.
    Zhou L; Marzbanrad F; Ramanathan A; Fattahi D; Pharande P; Malhotra A
    Pediatr Pulmonol; 2020 Mar; 55(3):624-630. PubMed ID: 31917903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heart and Lung Sound Measurement Using an Esophageal Stethoscope with Adaptive Noise Cancellation.
    Mohamed N; Kim HS; Kang KM; Mohamed M; Kim SH; Kim JG
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of digital stethoscope for telemedicine.
    Lakhe A; Sodhi I; Warrier J; Sinha V
    J Med Eng Technol; 2016; 40(1):20-4. PubMed ID: 26728637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monaural cardiopulmonary sound separation via complex-valued deep autoencoder and cyclostationarity.
    Yang C; Hu N; Xu D; Wang Z; Cai S
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36796095
    [No Abstract]   [Full Text] [Related]  

  • 38. Computerized multichannel lung sound analysis. Development of acoustic instruments for diagnosis and management of medical conditions.
    Murphy R
    IEEE Eng Med Biol Mag; 2007; 26(1):16-9. PubMed ID: 17278768
    [No Abstract]   [Full Text] [Related]  

  • 39. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis.
    Gurung A; Scrafford CG; Tielsch JM; Levine OS; Checkley W
    Respir Med; 2011 Sep; 105(9):1396-403. PubMed ID: 21676606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of Neonatal Respiratory Distress in Term Babies at Birth from Digital Stethoscope Recorded Chest Sounds.
    Grooby E; Sitaula C; Tan K; Zhou L; King A; Ramanathan A; Malhotra A; Dumont GA; Marzbanrad F
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4996-4999. PubMed ID: 36086631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.