These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38544160)

  • 41. LiDAR-Based Real-Time Detection and Modeling of Power Lines for Unmanned Aerial Vehicles.
    Azevedo F; Dias A; Almeida J; Oliveira A; Ferreira A; Santos T; Martins A; Silva E
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: design and measurements in the Western Pacific.
    Liu Q; Wu S; Liu B; Liu J; Zhang K; Dai G; Tang J; Chen G
    Opt Express; 2022 Mar; 30(6):8927-8948. PubMed ID: 35299334
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep Neural Network-Based Phase-Modulated Continuous-Wave LiDAR.
    Zhang H; Wang Y; Zhang M; Song Y; Qiu C; Lei Y; Jia P; Liang L; Zhang J; Qin L; Ning Y; Wang L
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475153
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Improved DBSCAN Method for LiDAR Data Segmentation with Automatic Eps Estimation.
    Wang C; Ji M; Wang J; Wen W; Li T; Sun Y
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621299
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient Stereo Depth Estimation for Pseudo-LiDAR: A Self-Supervised Approach Based on Multi-Input ResNet Encoder.
    Hossain S; Lin X
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual-Frequency Doppler LiDAR Based on External Optical Feedback Effect in a Laser.
    Chen Z; Yu Y; Ruan Y; Nie B; Xi J; Guo Q; Tong J
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167438
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resolution adjustable Lissajous scanning with piezoelectric MEMS mirrors.
    Zhang Y; Liu Y; Wang L; Su Y; Zhang Y; Yu Z; Zhu W; Wang Y; Wu Z
    Opt Express; 2023 Jan; 31(2):2846-2859. PubMed ID: 36785289
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of an all-day portable polarization lidar system based on the division-of-focal-plane scheme for atmospheric polarization measurements.
    Kong Z; Ma T; Zheng K; Cheng Y; Gong Z; Hua D; Mei L
    Opt Express; 2021 Nov; 29(23):38512-38526. PubMed ID: 34808903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FMCW LiDAR System to Reduce Hardware Complexity and Post-Processing Techniques to Improve Distance Resolution.
    Kim C; Jung Y; Lee S
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33266404
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications.
    Adnan M; Slavic G; Martin Gomez D; Marcenaro L; Regazzoni C
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447967
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eye-safe diode laser Doppler lidar with a MEMS beam-scanner.
    Hu Q; Pedersen C; Rodrigo PJ
    Opt Express; 2016 Feb; 24(3):1934-42. PubMed ID: 26906770
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors.
    Haider A; Pigniczki M; Koyama S; Köhler MH; Haas L; Fink M; Schardt M; Nagase K; Zeh T; Eryildirim A; Poguntke T; Inoue H; Jakobi M; Koch AW
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571674
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A large-scale microelectromechanical-systems-based silicon photonics LiDAR.
    Zhang X; Kwon K; Henriksson J; Luo J; Wu MC
    Nature; 2022 Mar; 603(7900):253-258. PubMed ID: 35264759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3D chaos lidar system with a pulsed master oscillator power amplifier scheme.
    Chen JD; Ho HL; Tsay HL; Lee YL; Yang CA; Wu KW; Sun JL; Tsai DJ; Lin FY
    Opt Express; 2021 Aug; 29(17):27871-27881. PubMed ID: 34615193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-complexity adaptive radius outlier removal filter based on PCA for lidar point cloud denoising.
    Duan Y; Yang C; Li H
    Appl Opt; 2021 Jul; 60(20):E1-E7. PubMed ID: 34263788
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A 256 × 256 LiDAR Imaging System Based on a 200 mW SPAD-Based SoC with Microlens Array and Lightweight RGB-Guided Depth Completion Neural Network.
    Wang J; Li J; Wu Y; Yu H; Cui L; Sun M; Chiang PY
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water Cloud Detection with Circular Polarization Lidar: A Semianalytic Monte Carlo Simulation Approach.
    Ahmad W; Zhang K; Tong Y; Xiao D; Wu L; Liu D
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214581
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of the quadrangular prism beam splitting receiving system in the MEMS-based scanning LIDAR.
    Lee X; Zhou W; Huang Z
    Appl Opt; 2023 Feb; 62(5):1285-1289. PubMed ID: 36821234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. OMC-SLIO: Online Multiple Calibrations Spinning LiDAR Inertial Odometry.
    Wang S; Zhang H; Wang G
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.