These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38544185)
1. Assistance Device Based on SSVEP-BCI Online to Control a 6-DOF Robotic Arm. Albán-Escobar M; Navarrete-Arroyo P; De la Cruz-Guevara DR; Tobar-Quevedo J Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544185 [TBL] [Abstract][Full Text] [Related]
2. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI. Chen X; Zhao B; Wang Y; Xu S; Gao X Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990 [TBL] [Abstract][Full Text] [Related]
3. BCI Control of a Robotic Arm Based on SSVEP With Moving Stimuli for Reach and Grasp Tasks. Ai J; Meng J; Mai X; Zhu X IEEE J Biomed Health Inform; 2023 Aug; 27(8):3818-3829. PubMed ID: 37200132 [TBL] [Abstract][Full Text] [Related]
4. Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm. Quiles E; Dadone J; Chio N; García E Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808498 [TBL] [Abstract][Full Text] [Related]
5. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. Chen X; Zhao B; Wang Y; Gao X J Neural Eng; 2019 Apr; 16(2):026012. PubMed ID: 30523962 [TBL] [Abstract][Full Text] [Related]
6. [Robotic arm control system based on augmented reality brain-computer interface and computer vision]. Chen X; Li K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):483-491. PubMed ID: 34180193 [TBL] [Abstract][Full Text] [Related]
7. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
8. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI). Lim JH; Hwang HJ; Han CH; Jung KY; Im CH J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484 [TBL] [Abstract][Full Text] [Related]
9. An online SSVEP-BCI system in an optical see-through augmented reality environment. Ke Y; Liu P; An X; Song X; Ming D J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342 [TBL] [Abstract][Full Text] [Related]
10. BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients. Casey A; Azhar H; Grzes M; Sakel M Disabil Rehabil Assist Technol; 2021 Jul; 16(5):525-537. PubMed ID: 31711336 [TBL] [Abstract][Full Text] [Related]
11. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH; Baek HJ; Lee SM; Park KS Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034 [TBL] [Abstract][Full Text] [Related]
12. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies. Hwang HJ; Han CH; Lim JH; Kim YW; Choi SI; An KO; Lee JH; Cha HS; Hyun Kim S; Im CH Psychophysiology; 2017 Mar; 54(3):444-451. PubMed ID: 27914171 [TBL] [Abstract][Full Text] [Related]
13. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses. Baek HJ; Kim HS; Heo J; Lim YG; Park KS J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913 [TBL] [Abstract][Full Text] [Related]
14. A BCI painting system using a hybrid control approach based on SSVEP and P300. Tang Z; Wang X; Wu J; Ping Y; Guo X; Cui Z Comput Biol Med; 2022 Nov; 150():106118. PubMed ID: 36166987 [TBL] [Abstract][Full Text] [Related]
15. Exploration of User's Mental State Changes during Performing Brain-Computer Interface. Ko LW; Chikara RK; Lee YC; Lin WC Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162 [TBL] [Abstract][Full Text] [Related]
16. Implementing a calibration-free SSVEP-based BCI system with 160 targets. Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091 [No Abstract] [Full Text] [Related]
17. Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm. Chen X; Huang X; Wang Y; Gao X IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3140-3147. PubMed ID: 33196442 [TBL] [Abstract][Full Text] [Related]
18. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy. Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607 [No Abstract] [Full Text] [Related]
19. [The supernumerary robotic limbs of brain-computer interface based on asynchronous steady-state visual evoked potential]. Xie P; Men Y; Zhen J; Shao X; Zhao J; Chen X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):664-672. PubMed ID: 39218591 [TBL] [Abstract][Full Text] [Related]
20. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification. Ko LW; Sandeep Vara Sankar D; Huang Y; Lu YC; Shaw S; Jung TP J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]