These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38544198)

  • 1. Development of Wearable Devices for Collecting Digital Rehabilitation/Fitness Data from Lower Limbs.
    Huang YJ; Chang CS; Wu YC; Han CC; Cheng YY; Chen HM
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technology in Rehabilitation: Comparing Personalised and Global Classification Methodologies in Evaluating the Squat Exercise with Wearable IMUs.
    Whelan DF; O'Reilly MA; Ward TE; Delahunt E; Caulfield B
    Methods Inf Med; 2017 Oct; 56(5):361-369. PubMed ID: 28612890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Effects of Mild Traumatic Brain Injury on Vestibular Home Exercise Performance with Wearable Sensors.
    Campbell KR; Wilhelm JL; Antonellis P; Scanlan KT; Pettigrew NC; Martini DN; Chesnutt JC; King LA
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study.
    Chae SH; Kim Y; Lee KS; Park HS
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Machine Learning Models for Classifying Upper Extremity Exercises Using Inertial Measurement Unit-Based Kinematic Data.
    Hua A; Chaudhari P; Johnson N; Quinton J; Schatz B; Buchner D; Hernandez ME
    IEEE J Biomed Health Inform; 2020 Sep; 24(9):2452-2460. PubMed ID: 32750927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units.
    Whelan DF; O'Reilly MA; Ward TE; Delahunt E; Caulfield B
    Methods Inf Med; 2017 Mar; 56(2):88-94. PubMed ID: 27782290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Motion Sensor Device to Facilitate Rehabilitation in Patients With Shoulder Adhesive Capsulitis: Pilot Study to Assess Feasibility.
    Chen YP; Lin CY; Tsai MJ; Chuang TY; Lee OK
    J Med Internet Res; 2020 Jul; 22(7):e17032. PubMed ID: 32457026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technology in Strength and Conditioning: Assessing Bodyweight Squat Technique With Wearable Sensors.
    OʼReilly MA; Whelan DF; Ward TE; Delahunt E; Caulfield BM
    J Strength Cond Res; 2017 Aug; 31(8):2303-2312. PubMed ID: 28731981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison.
    Milosevic B; Leardini A; Farella E
    Biomed Eng Online; 2020 Apr; 19(1):25. PubMed ID: 32326957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automation of Functional Mobility Assessments at Home Using a Multimodal Sensor System Integrating Inertial Measurement Units and Computer Vision (IMU-Vision).
    Spangler J; Mitjans M; Collimore A; Gomes-Pires A; Levine DM; Tron R; Awad LN
    Phys Ther; 2024 Feb; 104(2):. PubMed ID: 38159106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Ground Reaction Force and Knee Extension Moment Estimation During Drop Landings Via Modular LSTM Modeling and Wearable IMUs.
    Sun T; Li D; Fan B; Tan T; Shull PB
    IEEE J Biomed Health Inform; 2023 Jul; 27(7):3222-3233. PubMed ID: 37104102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technology in Strength and Conditioning Tracking Lower-Limb Exercises With Wearable Sensors.
    OʼReilly MA; Whelan DF; Ward TE; Delahunt E; Caulfield B
    J Strength Cond Res; 2017 Jun; 31(6):1726-1736. PubMed ID: 28538326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Data-Driven Approach to Predict Fatigue in Exercise Based on Motion Data from Wearable Sensors or Force Plate.
    Jiang Y; Hernandez V; Venture G; Kulić D; K Chen B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU.
    Zhang H; Zhang Z; Gao N; Xiao Y; Meng Z; Li Z
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ExerSense: Physical Exercise Recognition and Counting Algorithm from Wearables Robust to Positioning.
    Ishii S; Yokokubo A; Luimula M; Lopez G
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Machine Learning App for Monitoring Physical Therapy at Home.
    Pereira B; Cunha B; Viana P; Lopes M; Melo ASC; Sousa ASP
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Wearable Flow-MIMU Device for Monitoring Human Dynamic Motion.
    Liu SQ; Zhang JC; Li GZ; Zhu R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):637-645. PubMed ID: 32031941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable Inertial Sensors for Exergames and Rehabilitation
    Bethi SR; RajKumar A; Vulpi F; Raghavan P; Kapila V
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4579-4582. PubMed ID: 33019013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.