These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38544199)

  • 1. A Deep Learning Approach for Surface Crack Classification and Segmentation in Unmanned Aerial Vehicle Assisted Infrastructure Inspections.
    Egodawela S; Khodadadian Gostar A; Buddika HADS; Dammika AJ; Harischandra N; Navaratnam S; Mahmoodian M
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle.
    Kim IH; Jeon H; Baek SC; Hong WH; Jung HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision and Deep Learning-Based Algorithms to Detect and Quantify Cracks on Concrete Surfaces from UAV Videos.
    Bhowmick S; Nagarajaiah S; Veeraraghavan A
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of Cracks in Concrete Structures Using an Unmanned Aerial Vehicle.
    Woo HJ; Seo DM; Kim MS; Park MS; Hong WH; Baek SC
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network.
    Feng C; Zhang H; Wang H; Wang S; Li Y
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32272652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Intelligent identification of livestock, a source of
    Xue J; Xia S; Li Z; Wang X; Huang L; He R; Li S
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2023 May; 35(2):121-127. PubMed ID: 37253560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Detection of Missing Thin Propagating Cracks during Deep-Learning-Based Concrete Crack/Non-Crack Classification.
    Kolappan Geetha G; Yang HJ; Sim SH
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Approach for UAV Image Crack Detection.
    Li Y; Ma J; Zhao Z; Shi G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning techniques to classify agricultural crops through UAV imagery: a review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    Neural Comput Appl; 2022; 34(12):9511-9536. PubMed ID: 35281624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. White shark optimizer with optimal deep learning based effective unmanned aerial vehicles communication and scene classification.
    Nadana Ravishankar T; Ramprasath M; Daniel A; Selvarajan S; Subbiah P; Balusamy B
    Sci Rep; 2023 Dec; 13(1):23041. PubMed ID: 38155207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Study on the Detection of Cattle in UAV Images Using Deep Learning.
    Barbedo JGA; Koenigkan LV; Santos TT; Santos PM
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks.
    Choi D; Bell W; Kim D; Kim J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Binocular Vision-Based Crack Detection and Measurement Method Incorporating Semantic Segmentation.
    Zhang Z; Shen Z; Liu J; Shu J; Zhang H
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining the YOLOv4 Deep Learning Model with UAV Imagery Processing Technology in the Extraction and Quantization of Cracks in Bridges.
    Kao SP; Chang YC; Wang FL
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Concrete Crack Detection Process via a Hybrid Visual Transformer Algorithm.
    Shahin M; Chen FF; Maghanaki M; Hosseinzadeh A; Zand N; Khodadadi Koodiani H
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data.
    Gebrehiwot A; Hashemi-Beni L; Thompson G; Kordjamshidi P; Langan TE
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of Lightweight Convolutional Neural Networks with an Early Exit Mechanism Utilizing 40 nm CMOS Process for Fire Detection in Unmanned Aerial Vehicles.
    Liang YP; Chang CM; Chung CC
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secure and Privacy-Preserving Intrusion Detection and Prevention in the Internet of Unmanned Aerial Vehicles.
    Ntizikira E; Lei W; Alblehai F; Saleem K; Lodhi MA
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.