These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38544272)

  • 1. Determining Cognitive Workload Using Physiological Measurements: Pupillometry and Heart-Rate Variability.
    Ma X; Monfared R; Grant R; Goh YM
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Context-Dependent Cognitive Workload Monitoring using Pupillometry for Control Room Operators to Prevent Overload.
    Bhavsar P
    IISE Trans Occup Ergon Hum Factors; 2022; 10(2):91-103. PubMed ID: 35575073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging.
    Sharma H; Drukker L; Papageorghiou AT; Noble JA
    Comput Biol Med; 2021 Aug; 135():104589. PubMed ID: 34198044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the Physiological Correlates of Mental Workload Variations in Tracking and Collision Prediction Tasks.
    John AR; Singh AK; Do TN; Eidels A; Nalivaiko E; Gavgani AM; Brown S; Bennett M; Lal S; Simpson AM; Gustin SM; Double K; Walker FR; Kleitman S; Morley J; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():770-781. PubMed ID: 35259108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a behavioural video coding scheme for detecting mental workload in manual assembly.
    Van Acker BB; Parmentier DD; Conradie PD; Van Hove S; Biondi A; Bombeke K; Vlerick P; Saldien J
    Ergonomics; 2021 Jan; 64(1):78-102. PubMed ID: 32813584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cyber-Physical-Human System for One-to-Many UAS Operations: Cognitive Load Analysis.
    Planke LJ; Lim Y; Gardi A; Sabatini R; Kistan T; Ezer N
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological measures of operators' mental state in supervisory process control tasks: a scoping review.
    Pütz S; Mertens A; Chuang L; Nitsch V
    Ergonomics; 2024 Jun; 67(6):801-830. PubMed ID: 38031407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transitions Between Low and High Levels of Mental Workload can Improve Multitasking Performance.
    Devlin SP; Moacdieh NM; Wickens CD; Riggs SL
    IISE Trans Occup Ergon Hum Factors; 2020; 8(2):72-87. PubMed ID: 32673167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study.
    Fallahi M; Motamedzade M; Heidarimoghadam R; Soltanian AR; Miyake S
    Appl Ergon; 2016 Jan; 52():95-103. PubMed ID: 26360199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operators' Load Monitoring and Management.
    Kale U; Rohács J; Rohács D
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32824973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validating an abnormal situation prediction model for smart manufacturing in the oil refining industry.
    Shi C; Rothrock L
    Appl Ergon; 2022 May; 101():103697. PubMed ID: 35101692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical brain monitoring for operator training and mental workload assessment.
    Ayaz H; Shewokis PA; Bunce S; Izzetoglu K; Willems B; Onaral B
    Neuroimage; 2012 Jan; 59(1):36-47. PubMed ID: 21722738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring cognitive workload in the nuclear control room: a review.
    Braarud PØ
    Ergonomics; 2024 Jun; 67(6):849-865. PubMed ID: 38279638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using near infrared spectroscopy and heart rate variability to detect mental overload.
    Durantin G; Gagnon JF; Tremblay S; Dehais F
    Behav Brain Res; 2014 Feb; 259():16-23. PubMed ID: 24184083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time prediction of short-timescale fluctuations in cognitive workload.
    Boehm U; Matzke D; Gretton M; Castro S; Cooper J; Skinner M; Strayer D; Heathcote A
    Cogn Res Princ Implic; 2021 Apr; 6(1):30. PubMed ID: 33835271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the impact of main control room digitalization on operators cognitive reliability in nuclear power plants.
    Zhou Y; Mu H; Jiang J; Zhang L
    Work; 2012; 41 Suppl 1():714-21. PubMed ID: 22316806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Adaptive Human-Robotic Interaction Architecture for Augmenting Surgery Performance Using Real-Time Workload Sensing-Demonstration of a Semi-autonomous Suction Tool.
    Yang J; Barragan JA; Farrow JM; Sundaram CP; Wachs JP; Yu D
    Hum Factors; 2024 Apr; 66(4):1081-1102. PubMed ID: 36367971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of operators' mental workload using physiological and subjective measures in cement, city traffic and power plant control centers.
    Fallahi M; Motamedzade M; Heidarimoghadam R; Soltanian AR; Miyake S
    Health Promot Perspect; 2016; 6(2):96-103. PubMed ID: 27386425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-Based Mental Workload Estimation.
    Samima S; Sarma M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5605-5608. PubMed ID: 31947126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of a slack-pulling device in reducing operator physiological workload during log winching operations.
    Spinelli R; Aalmo GO; Magagnotti N
    Ergonomics; 2015; 58(5):781-90. PubMed ID: 25409752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.