These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38544433)
1. High Open-Circuit Voltage Organic Solar Cells with 19.2% Efficiency Enabled by Synergistic Side-Chain Engineering. Xu R; Jiang Y; Liu F; Ran G; Liu K; Zhang W; Zhu X Adv Mater; 2024 Jun; 36(26):e2312101. PubMed ID: 38544433 [TBL] [Abstract][Full Text] [Related]
2. Phenoxy Group-Containing Asymmetric Non-Fullerene Acceptors Achieved Higher Wang CH; Busireddy MR; Huang SC; Nie H; Liu YS; Lai BY; Meng LH; Chuang WT; Scharber MC; Chen JT; Hsu CS ACS Appl Mater Interfaces; 2023 Dec; 15(50):58683-58692. PubMed ID: 38073043 [TBL] [Abstract][Full Text] [Related]
3. PBDB-T-Based Binary-OSCs Achieving over 15.83% Efficiency via End-Group Functionalization and Alkyl-Chain Engineering of Quinoxaline-Containing Non-Fullerene Acceptors. Busireddy MR; Chen TW; Huang SC; Su YJ; Wang YM; Chuang WT; Chen JT; Hsu CS ACS Appl Mater Interfaces; 2022 Sep; 14(36):41264-41274. PubMed ID: 36041037 [TBL] [Abstract][Full Text] [Related]
4. The central core size effect in quinoxaline-based non-fullerene acceptors for high Ran X; Shi Y; Qiu D; Zhang J; Lu K; Wei Z Nanoscale; 2023 Nov; 15(45):18291-18299. PubMed ID: 37941482 [TBL] [Abstract][Full Text] [Related]
5. Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4- Liu F; Zhang J; Wang Y; Chen S; Zhou Z; Yang C; Gao F; Zhu X ACS Appl Mater Interfaces; 2019 Sep; 11(38):35193-35200. PubMed ID: 31405275 [TBL] [Abstract][Full Text] [Related]
6. Understanding of the Nearly Linear Tunable Open-Circuit Voltages in Ternary Organic Solar Cells Based on Two Non-fullerene Acceptors. Jia Z; Chen Z; Chen X; Bai L; Zhu H; Yang YM J Phys Chem Lett; 2021 Jan; 12(1):151-156. PubMed ID: 33320004 [TBL] [Abstract][Full Text] [Related]
7. Organic Solar Cells with Over 19% Efficiency Enabled by a 2D-Conjugated Non-Fullerene Acceptor Featuring Favorable Electronic and Aggregation Structures. Liu K; Jiang Y; Liu F; Ran G; Huang F; Wang W; Zhang W; Zhang C; Hou J; Zhu X Adv Mater; 2023 Aug; 35(32):e2300363. PubMed ID: 37243566 [TBL] [Abstract][Full Text] [Related]
8. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells. Naveed HB; Zhou K; Ma W Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121 [TBL] [Abstract][Full Text] [Related]
9. Simultaneously enhancing the photovoltaic parameters of ternary organic solar cells by incorporating a fused ring electron acceptor. Zhang M; Chen X; Wang L; Deng X; Tan S RSC Adv; 2023 Jun; 13(25):17354-17361. PubMed ID: 37304790 [TBL] [Abstract][Full Text] [Related]
10. Two-Dimensional Conjugated Benzo[1,2-b:4,5-b']diselenophene-Based Copolymer Donor Enables Large Open-Circuit Voltage and High Efficiency in Selenophene-based Organic Solar Cells. Liu YQ; Zhi HF; Bai HR; Jiang Z; Wan SS; Jiang M; Mahmood A; Yang C; Sun S; An Q; Wang JL ChemSusChem; 2021 Oct; 14(20):4454-4465. PubMed ID: 34323383 [TBL] [Abstract][Full Text] [Related]
11. Y-Type Non-Fullerene Acceptors with Outer Branched Side Chains and Inner Cyclohexane Side Chains for 19.36% Efficiency Polymer Solar Cells. Deng M; Xu X; Duan Y; Yu L; Li R; Peng Q Adv Mater; 2023 Mar; 35(10):e2210760. PubMed ID: 36599710 [TBL] [Abstract][Full Text] [Related]
12. Side-Chain Effects on Energy-Level Modulation and Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. Luo Z; Zhao Y; Zhang ZG; Li G; Wu K; Xie D; Gao W; Li Y; Yang C ACS Appl Mater Interfaces; 2017 Oct; 9(39):34146-34152. PubMed ID: 28892350 [TBL] [Abstract][Full Text] [Related]
13. Small-Molecule Acceptor with Unsymmetric Substituents and Fused Rings for High-Performance Organic Solar Cells with Enhanced Mobility and Reduced Energy Losses. Li Z; Kong X; Chen Z; Angunawela I; Zhu H; Li X; Meng L; Ade H; Li Y ACS Appl Mater Interfaces; 2022 Nov; 14(46):52058-52066. PubMed ID: 36349970 [TBL] [Abstract][Full Text] [Related]
14. An unfused-ring acceptor with high side-chain economy enabling 11.17% as-cast organic solar cells. Du F; Wang H; Zhang Z; Yang L; Cao J; Yu J; Tang W Mater Horiz; 2021 Mar; 8(3):1008-1016. PubMed ID: 34821331 [TBL] [Abstract][Full Text] [Related]
15. Organic Photovoltaic Cells Based on Nonhalogenated Polymer Donors and Nonhalogenated A-DA'D-A-Type Nonfullerene Acceptors with High Zhou J; He Z; Sun Y; Tang A; Guo Q; Zhou E ACS Appl Mater Interfaces; 2022 Sep; 14(36):41296-41303. PubMed ID: 36052498 [TBL] [Abstract][Full Text] [Related]
16. High-Performance PM6:Y6-Based Ternary Solar Cells with Enhanced Open Circuit Voltage and Balanced Mobilities via Doping a Wide-Band-Gap Amorphous Acceptor. Liu S; Xue Z; Liang Z; Zhao B; Wang W; Cong Z; Wu H; Lu G; Zheng J; Gao C ACS Appl Mater Interfaces; 2024 Jul; 16(28):36705-36714. PubMed ID: 38958143 [TBL] [Abstract][Full Text] [Related]
17. Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells. Han G; Yi Y Acc Chem Res; 2022 Mar; 55(6):869-877. PubMed ID: 35230078 [TBL] [Abstract][Full Text] [Related]
18. Dithienobenzothiadiazole (DTBT)-Based Polymers Enable Organic Solar Cells with Ultrahigh V Li X; Wang Z; Tang A; Guo Q; Liu Y; Du M; Zhou E Macromol Rapid Commun; 2023 Jun; 44(12):e2300019. PubMed ID: 37027787 [TBL] [Abstract][Full Text] [Related]
19. Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor. Cai G; Li Y; Zhou J; Xue P; Liu K; Wang J; Xie Z; Li G; Zhan X; Lu X ACS Appl Mater Interfaces; 2020 Nov; 12(45):50660-50667. PubMed ID: 33112591 [TBL] [Abstract][Full Text] [Related]
20. Quinoxaline-Based Wide Band Gap Polymers for Efficient Nonfullerene Organic Solar Cells with Large Open-Circuit Voltages. Yang J; Uddin MA; Tang Y; Wang Y; Wang Y; Su H; Gao R; Chen ZK; Dai J; Woo HY; Guo X ACS Appl Mater Interfaces; 2018 Jul; 10(27):23235-23246. PubMed ID: 29911382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]