These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 38545126)

  • 21. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells.
    Morgan MA; Büning H; Sauer M; Schambach A
    Front Immunol; 2020; 11():1965. PubMed ID: 32903482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas-based CAR-T cells: production and application.
    Song P; Zhang Q; Xu Z; Shi Y; Jing R; Luo D
    Biomark Res; 2024 May; 12(1):54. PubMed ID: 38816881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy.
    Afolabi LO; Afolabi MO; Sani MM; Okunowo WO; Yan D; Chen L; Zhang Y; Wan X
    Clin Transl Immunology; 2021; 10(6):e1286. PubMed ID: 34188916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applications and advances of CRISPR-Cas9 in cancer immunotherapy.
    Xia AL; He QF; Wang JC; Zhu J; Sha YQ; Sun B; Lu XJ
    J Med Genet; 2019 Jan; 56(1):4-9. PubMed ID: 29970486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome Editing in CAR-T Cells Using CRISPR/Cas9 Technology.
    Andreu-Saumell I; Rodriguez-Garcia A; Guedan S
    Methods Mol Biol; 2024; 2748():151-165. PubMed ID: 38070114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy.
    Gong Y; Klein Wolterink RGJ; Wang J; Bos GMJ; Germeraad WTV
    J Hematol Oncol; 2021 May; 14(1):73. PubMed ID: 33933160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy.
    Ghaffari S; Khalili N; Rezaei N
    J Exp Clin Cancer Res; 2021 Aug; 40(1):269. PubMed ID: 34446084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concurrent transposon engineering and CRISPR/Cas9 genome editing of primary CLL-1 chimeric antigen receptor-natural killer cells.
    Gurney M; O'Reilly E; Corcoran S; Brophy S; Krawczyk J; Otto NM; Hermanson DL; Childs RW; Szegezdi E; O'Dwyer ME
    Cytotherapy; 2022 Nov; 24(11):1087-1094. PubMed ID: 36050244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization and validation of CAR transduction into human primary NK cells using CRISPR and AAV.
    Naeimi Kararoudi M; Likhite S; Elmas E; Yamamoto K; Schwartz M; Sorathia K; de Souza Fernandes Pereira M; Sezgin Y; Devine RD; Lyberger JM; Behbehani GK; Chakravarti N; Moriarity BS; Meyer K; Lee DA
    Cell Rep Methods; 2022 Jun; 2(6):100236. PubMed ID: 35784645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool.
    Shojaei Baghini S; Gardanova ZR; Abadi SAH; Zaman BA; İlhan A; Shomali N; Adili A; Moghaddar R; Yaseri AF
    Cell Mol Biol Lett; 2022 May; 27(1):35. PubMed ID: 35508982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems.
    Wang L; Chen Y; Liu X; Li Z; Dai X
    Front Oncol; 2021; 11():704999. PubMed ID: 35111663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-Mediated Genome Editing in Cancer Therapy.
    Ding S; Liu J; Han X; Tang M
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering the next generation of CAR-NK immunotherapies.
    Biederstädt A; Rezvani K
    Int J Hematol; 2021 Nov; 114(5):554-571. PubMed ID: 34453686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CAR-NK Cells: From Natural Basis to Design for Kill.
    Khawar MB; Sun H
    Front Immunol; 2021; 12():707542. PubMed ID: 34970253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines.
    Raikar SS; Fleischer LC; Moot R; Fedanov A; Paik NY; Knight KA; Doering CB; Spencer HT
    Oncoimmunology; 2018; 7(3):e1407898. PubMed ID: 29399409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell.
    Lin C; Zhang J
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):200-215. PubMed ID: 29378229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Taking Lessons from CAR-T Cells and Going Beyond: Tailoring Design and Signaling for CAR-NK Cells in Cancer Therapy.
    Ruppel KE; Fricke S; Köhl U; Schmiedel D
    Front Immunol; 2022; 13():822298. PubMed ID: 35371071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of CRISPR/Cas9 gene editing to improve chimeric antigen-receptor T cell therapy: A systematic review and meta-analysis of preclinical studies.
    Maganti HB; Kirkham AM; Bailey AJM; Shorr R; Kekre N; Pineault N; Allan DS
    Cytotherapy; 2022 Apr; 24(4):405-412. PubMed ID: 35039239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy.
    Huang D; Miller M; Ashok B; Jain S; Peppas NA
    Adv Drug Deliv Rev; 2020; 158():17-35. PubMed ID: 32707148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics.
    Bhat AA; Nisar S; Mukherjee S; Saha N; Yarravarapu N; Lone SN; Masoodi T; Chauhan R; Maacha S; Bagga P; Dhawan P; Akil AA; El-Rifai W; Uddin S; Reddy R; Singh M; Macha MA; Haris M
    J Transl Med; 2022 Nov; 20(1):534. PubMed ID: 36401282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.