BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38545933)

  • 1. Electro-Induced Phase Transformation of a Conductive Metal-Organic Framework Film for Nonlinear Optical Switching.
    Ma ZZ; Wang Z; Li QH; Wang YY; Gu ZG; Zhang J
    Nano Lett; 2024 Apr; 24(14):4186-4193. PubMed ID: 38545933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented Assembly of 2D Metal-Pyridylporphyrinic Framework Films for Giant Nonlinear Optical Limiting.
    Li DJ; Li QH; Gu ZG; Zhang J
    Nano Lett; 2021 Dec; 21(23):10012-10018. PubMed ID: 34797085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically regulating nonlinear optical limiting of metal-organic framework film.
    Ma ZZ; Li QH; Wang Z; Gu ZG; Zhang J
    Nat Commun; 2022 Oct; 13(1):6347. PubMed ID: 36289248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-controlled fabrication of a metal-porphyrin framework thin film with tunable optical limiting effects.
    Li DJ; Gu ZG; Zhang J
    Chem Sci; 2020 Jan; 11(7):1935-1942. PubMed ID: 34123287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Third-Order Nonlinear Optical Modulation Behavior of Photoresponsive Bimetallic MOFs.
    Yu J; Sun Y; Geng K; Huang J; Cui Y; Hou H
    Inorg Chem; 2024 Apr; 63(14):6526-6536. PubMed ID: 38519424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porphyrin metal-organic frameworks with bilayer and pillar-layered frameworks and third-order nonlinear optical properties.
    Zhu Z; Wang Z; Li QH; Ma Z; Wang F; Zhang J
    Dalton Trans; 2023 Apr; 52(14):4309-4314. PubMed ID: 36951491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Two-Dimensional Homo-Bimetallic Porphyrin Framework Thin Films for Optimizing Nonlinear Optical Limiting.
    Pu DF; Chen QY; Zheng X; Li DJ
    Inorg Chem; 2024 Jan; 63(1):909-914. PubMed ID: 38123359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination-Induced Symmetry Breaking on Metal-Porphyrinic Framework Thin Films for Enhanced Nonlinear Optical Limiting.
    Tian YB; Li QH; Wang Z; Gu ZG; Zhang J
    Nano Lett; 2023 Apr; 23(7):3062-3069. PubMed ID: 36995141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced third-order nonlinear optical properties determined in thin films using the Z-scan technique: bis(μ-4,4'-oxydibenzoato)bis[(4'-phenyl-2,2':6',2''-terpyridine)cobalt(II)].
    Liu R; Zhao N; Liu P; An C; Lian Z
    Acta Crystallogr C Struct Chem; 2016 May; 72(Pt 5):451-5. PubMed ID: 27146576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ingenious Modulation of Third-Order Nonlinear Optical Response of Zr-MOFs through Defect Engineering Based on a Mixed-Linker Strategy.
    Yin X; Sun Y; Geng K; Cui Y; Huang J; Hou H
    Inorg Chem; 2024 Apr; 63(15):6723-6733. PubMed ID: 38569126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant and Multistage Nonlinear Optical Response in Porphyrin-Based Surface-Supported Metal-Organic Framework Nanofilms.
    Gu C; Zhang H; You P; Zhang Q; Luo G; Shen Q; Wang Z; Hu J
    Nano Lett; 2019 Dec; 19(12):9095-9101. PubMed ID: 31765163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Regulating Third-Order Nonlinear Optical Property by Coordination Interaction.
    Zhao Y; Li H; Shao Z; Xu W; Meng X; Song Y; Hou H
    Inorg Chem; 2019 Apr; 58(8):4792-4801. PubMed ID: 30920208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Optical Switching in Regioregular Porphyrin Covalent Organic Frameworks.
    Biswal BP; Valligatla S; Wang M; Banerjee T; Saad NA; Mariserla BMK; Chandrasekhar N; Becker D; Addicoat M; Senkovska I; Berger R; Rao DN; Kaskel S; Feng X
    Angew Chem Int Ed Engl; 2019 May; 58(21):6896-6900. PubMed ID: 30864202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking the Remarkable Influence of Intramolecular Group Rotation for Third-order Nonlinear Optical Properties.
    Geng K; Xie Q; Zhao Y; Yang L; Song Y; Hou H
    Chem Asian J; 2021 Apr; 16(8):981-987. PubMed ID: 33751826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Strategy for Investigating the Third-Order Nonlinear Optical (NLO) Properties of Solid-State Coordination Polymers.
    Geng K; Yang X; Zhao Y; Cui Y; Ding J; Hou H
    Inorg Chem; 2022 Aug; 61(31):12386-12395. PubMed ID: 35895943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [C
    Liu X; Ji C; Wu Z; Li L; Han S; Wang Y; Sun Z; Luo J
    Chemistry; 2019 Feb; 25(10):2610-2615. PubMed ID: 30575164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpenetrated Metal-Porphyrinic Framework for Enhanced Nonlinear Optical Limiting.
    Li DJ; Li QH; Wang ZR; Ma ZZ; Gu ZG; Zhang J
    J Am Chem Soc; 2021 Oct; 143(41):17162-17169. PubMed ID: 34543015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystalline Porous Materials for Nonlinear Optics.
    Shi R; Han X; Xu J; Bu XH
    Small; 2021 Jun; 17(22):e2006416. PubMed ID: 33734577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of SBUs and Synergy of MOF Host-Guest in Single Crystalline State: Ingenious Strategies for Modulating Third-Order NLO Signals.
    Sun Y; Xu W; Lang F; Wang H; Pan F; Hou H
    Small; 2024 Jan; 20(4):e2305879. PubMed ID: 37715100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-Temperature Phase Transition Material with Switchable Second-Order Nonlinear Optical Properties.
    Luo YL; Zhou L; Bai YJ; Huang XY; Zhu X; Yan X; Deng X; Wang YJ; Lv HP; Tang YY
    ACS Appl Mater Interfaces; 2024 May; 16(19):25065-25070. PubMed ID: 38712510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.