These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38546136)

  • 41. Synergistic Effect of Carbon Micro/Nano-Fillers and Surface Patterning on the Superlubric Performance of 3D-Printed Structures.
    Gkougkousi K; Karantzalis AE; Nikolakopoulos PG; Dassios KG
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473685
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superlubricity of a graphene/MoS
    Wang L; Zhou X; Ma T; Liu D; Gao L; Li X; Zhang J; Hu Y; Wang H; Dai Y; Luo J
    Nanoscale; 2017 Aug; 9(30):10846-10853. PubMed ID: 28726941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superlubricity Enabled by Pressure-Induced Friction Collapse.
    Sun J; Zhang Y; Lu Z; Li Q; Xue Q; Du S; Pu J; Wang L
    J Phys Chem Lett; 2018 May; 9(10):2554-2559. PubMed ID: 29714483
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Origin of Nanoscale Friction Contrast between Supported Graphene, MoS
    Vazirisereshk MR; Ye H; Ye Z; Otero-de-la-Roza A; Zhao MQ; Gao Z; Johnson ATC; Johnson ER; Carpick RW; Martini A
    Nano Lett; 2019 Aug; 19(8):5496-5505. PubMed ID: 31267757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water.
    Li J; Cao W; Li J; Ma M; Luo J
    J Phys Chem Lett; 2019 Jun; 10(11):2978-2984. PubMed ID: 31094522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interlayer Potential for Graphene/h-BN Heterostructures.
    Leven I; Maaravi T; Azuri I; Kronik L; Hod O
    J Chem Theory Comput; 2016 Jun; 12(6):2896-905. PubMed ID: 27168429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Unusual Tribological Properties of Graphene/Antimonene Heterojunctions: A First-Principles Investigation.
    Jiang X; Lu Z; Zhang R
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Macroscale Superlubricity on Nanoscale Graphene Moiré Structure-Assembled Surface via Counterface Hydrogen Modulation.
    Wang Y; Yang X; Liang H; Zhao J; Zhang J
    Adv Sci (Weinh); 2024 May; 11(19):e2309701. PubMed ID: 38483889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The registry index: a quantitative measure of materials' interfacial commensurability.
    Hod O
    Chemphyschem; 2013 Aug; 14(11):2376-91. PubMed ID: 23780640
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Charge density fluctuation determined the interlayer friction in bilayer MN
    Hou D; Niu Z; Li X; Jing X; Sun J; Fan X; Shi J; Cao T
    Phys Chem Chem Phys; 2024 Jun; 26(23):16792-16801. PubMed ID: 38825889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Origin of Friction in Superlubric Graphite Contacts.
    Qu C; Wang K; Wang J; Gongyang Y; Carpick RW; Urbakh M; Zheng Q
    Phys Rev Lett; 2020 Sep; 125(12):126102. PubMed ID: 33016762
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Edge length-dependent interlayer friction of graphene.
    Zhang H; Li Y; Qu J; Zhang J
    RSC Adv; 2020 Dec; 11(1):328-334. PubMed ID: 35423019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Friction fluctuations of gold nanoparticles in the superlubric regime.
    Dietzel D; Wijn AS; Vorholzer M; Schirmeisen A
    Nanotechnology; 2018 Apr; 29(15):155702. PubMed ID: 29460852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Velocity-Dependent Friction of Graphene at Electrical Contact Interfaces.
    Lang H; Peng Y; Zou K; Huang Y; Song C
    Langmuir; 2023 Aug; 39(32):11363-11370. PubMed ID: 37532707
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stability of superlubric sliding on graphite.
    de Wijn AS; Fusco C; Fasolino A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046105. PubMed ID: 20481784
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide.
    Oviedo JP; KC S; Lu N; Wang J; Cho K; Wallace RM; Kim MJ
    ACS Nano; 2015 Feb; 9(2):1543-51. PubMed ID: 25494557
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces.
    Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D
    Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.