These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38546182)

  • 61. Facile preparation of super durable superhydrophobic materials.
    Wu L; Zhang J; Li B; Fan L; Li L; Wang A
    J Colloid Interface Sci; 2014 Oct; 432():31-42. PubMed ID: 25069050
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Corrosion Resistance of ZnO Nanorod Superhydrophobic Coatings with Rose Petal Effect or Lotus Leaf Effect.
    Lai DL; Kong G; Li XC; Che CS
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3919-3928. PubMed ID: 30764951
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Multifunctional Ti
    Zhao Y; Yan C; Hou T; Dou H; Shen H
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26077-26087. PubMed ID: 35608175
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Eco-Friendly Fabrication of Transparent Superhydrophobic Coating with Excellent Mechanical Robustness, Chemical Stability, and Long-Term Outdoor Durability.
    Liu Y; Tan X; Li X; Xiao T; Jiang L; Nie S; Song J; Chen X
    Langmuir; 2022 Oct; 38(42):12881-12893. PubMed ID: 36217763
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 3D Printing of Superhydrophobic Objects with Bulk Nanostructure.
    Dong Z; Vuckovac M; Cui W; Zhou Q; Ras RHA; Levkin PA
    Adv Mater; 2021 Nov; 33(45):e2106068. PubMed ID: 34580937
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fast Self-Healing Superhydrophobic Thermal Energy Storage Coatings Fabricated by Bio-Based Beeswax and Artificially Cultivated Diatom Frustules.
    Sun H; Li T; Lei F; Lyu S; Yang Y; Li B; Han H; Wu B; Huang J; Zhang C; Li D; Sun D
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48088-48100. PubMed ID: 34582173
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Controlling Superhydrophobicity on Complex Substrates Based on a Vapor-Phase Sublimation and Deposition Polymerization.
    Chang YM; Wang YS; Chen HY
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48754-48763. PubMed ID: 37793161
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fabrication of Robust, Anti-reflective, Transparent Superhydrophobic Coatings with a Micropatterned Multilayer Structure.
    Luo W; Xu J; Li G; Niu G; Ng KW; Wang F; Li M
    Langmuir; 2022 Jun; 38(23):7129-7136. PubMed ID: 35658446
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings.
    Mai Z; Xiong Z; Shu X; Liu X; Zhang H; Yin X; Zhou Y; Liu M; Zhang M; Xu W; Chen D
    Carbohydr Polym; 2018 Nov; 199():516-525. PubMed ID: 30143158
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces.
    Yan X; Huang Z; Sett S; Oh J; Cha H; Li L; Feng L; Wu Y; Zhao C; Orejon D; Chen F; Miljkovic N
    ACS Nano; 2019 Apr; 13(4):4160-4173. PubMed ID: 30933473
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Recent Advances in Superhydrophobic Surfaces and Applications on Wood.
    Wei X; Niu X
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050296
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
    Cheng M; Zhang S; Dong H; Han S; Wei H; Shi F
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4275-82. PubMed ID: 25644454
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Environmentally benign and durable superhydrophobic coatings based on SiO
    Zhao X; Li Y; Li B; Hu T; Yang Y; Li L; Zhang J
    J Colloid Interface Sci; 2019 Apr; 542():8-14. PubMed ID: 30721836
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Scalable-Manufactured Superhydrophobic Multilayer Nanocomposite Coating with Mechanochemical Robustness and High-Temperature Endurance.
    Wang S; Wang Y; Zou Y; Chen G; Ouyang J; Jia D; Zhou Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35502-35512. PubMed ID: 32672926
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Spraying Preparation of Eco-Friendly Superhydrophobic Coatings with Ultralow Water Adhesion for Effective Anticorrosion and Antipollution.
    Shen Y; Wu Z; Tao J; Jia Z; Chen H; Liu S; Jiang J; Wang Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25484-25493. PubMed ID: 32406672
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Icephobic Coating through a Self-Formed Superhydrophobic Surface Using a Polymer and Microsized Particles.
    Moon CH; Yasmeen S; Park K; Gaiji H; Chung C; Kim H; Moon HS; Choi JW; Lee HB
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3334-3343. PubMed ID: 34981919
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Versatile Melanin-Like Coatings with Hierarchical Structure toward Personal Thermal Management, Anti-Icing/Deicing, and UV Protection.
    Zhao Z; Zhang Q; Song X; Chen J; Ding Y; Wu H; Guo S
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3522-3533. PubMed ID: 36600550
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Superhydrophobic surfaces generated by one-pot spray-coating of chitosan-based nanoparticles.
    Wang S; Sha J; Wang W; Qin C; Li W; Qin C
    Carbohydr Polym; 2018 Sep; 195():39-44. PubMed ID: 29804991
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Preparation and Evaluation of PDMS/Carbon Soot Particles Superhydrophobic Biomimetic Composite Coating with Self-Cleaning and Durability.
    Li F; Liu Y; Zhou H; Tian G
    Biomimetics (Basel); 2022 Sep; 7(3):. PubMed ID: 36134936
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reversible Thermochromic Superhydrophobic BiVO
    Wang X; Mu B; Xu J; Wang A
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3228-3236. PubMed ID: 33400493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.