These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38546291)

  • 1. Theoretical relationships between axoneme distortion and internal forces and torques in ciliary beating.
    Woodhams LG; Bayly PV
    Cytoskeleton (Hoboken); 2024 Mar; ():. PubMed ID: 38546291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading.
    Hu T; Bayly PV
    Cytoskeleton (Hoboken); 2018 May; 75(5):185-200. PubMed ID: 29316355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation.
    Lindemann CB
    Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of ciliary beating by steady dynein activity: the effects of inter-filament coupling in multi-filament models.
    Woodhams LG; Shen Y; Bayly PV
    J R Soc Interface; 2022 Jul; 19(192):20220264. PubMed ID: 35857924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turning dyneins off bends cilia.
    King SM
    Cytoskeleton (Hoboken); 2018 Aug; 75(8):372-381. PubMed ID: 30176122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella.
    Bayly PV; Dutcher SK
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27798276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear dynamics of cilia and flagella.
    Hilfinger A; Chattopadhyay AK; Jülicher F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051918. PubMed ID: 19518491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor regulation results in distal forces that bend partially disintegrated Chlamydomonas axonemes into circular arcs.
    Mukundan V; Sartori P; Geyer VF; Jülicher F; Howard J
    Biophys J; 2014 Jun; 106(11):2434-42. PubMed ID: 24896122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are the local adjustments of the relative spatial frequencies of the dynein arms and the beta-tubulin monomers involved in the regulation of the "9+2" axoneme?
    Cibert C
    J Theor Biol; 2008 Jul; 253(1):74-89. PubMed ID: 18405921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curvature regulation of the ciliary beat through axonemal twist.
    Sartori P; Geyer VF; Howard J; Jülicher F
    Phys Rev E; 2016 Oct; 94(4-1):042426. PubMed ID: 27841522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-induced conformational change of axonemal outer dynein arms revealed by cryo-electron tomography.
    Zimmermann N; Noga A; Obbineni JM; Ishikawa T
    EMBO J; 2023 Jun; 42(12):e112466. PubMed ID: 37051721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The many modes of flagellar and ciliary beating: Insights from a physical analysis.
    Lindemann CB; Lesich KA
    Cytoskeleton (Hoboken); 2021 Feb; 78(2):36-51. PubMed ID: 33675288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of unstable modes distinguishes mathematical models of flagellar motion.
    Bayly PV; Wilson KS
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How signals of calcium ions initiate the beats of cilia and flagella.
    Satarić MV; Nemeš T; Sekulić D; Tuszynski JA
    Biosystems; 2019 Aug; 182():42-51. PubMed ID: 31202860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the locations of force-generating dyneins in beating cilia and flagella.
    Howard J; Chasteen A; Ouyang X; Geyer VF; Sartori P
    Front Cell Dev Biol; 2022; 10():995847. PubMed ID: 36303602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia.
    Meng X; Xu C; Li J; Qiu B; Luo J; Hong Q; Tong Y; Fang C; Feng Y; Ma R; Shi X; Lin C; Pan C; Zhu X; Yan X; Cong Y
    Nat Commun; 2024 Jan; 15(1):362. PubMed ID: 38191553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules.
    King SM; Patel-King RS
    J Biol Chem; 2015 Mar; 290(12):7388-401. PubMed ID: 25572396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for axonemal distortion during the flagellar beat of Chlamydomonas.
    Lindemann CB; Mitchell DR
    Cell Motil Cytoskeleton; 2007 Aug; 64(8):580-9. PubMed ID: 17443716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kif9 is an active kinesin motor required for ciliary beating and proximodistal patterning of motile axonemes.
    Konjikusic MJ; Lee C; Yue Y; Shrestha BD; Nguimtsop AM; Horani A; Brody S; Prakash VN; Gray RS; Verhey KJ; Wallingford JB
    J Cell Sci; 2023 Mar; 136(5):. PubMed ID: 35531639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility.
    Aprea I; Raidt J; Höben IM; Loges NT; Nöthe-Menchen T; Pennekamp P; Olbrich H; Kaiser T; Biebach L; Tüttelmann F; Horvath J; Schubert M; Krallmann C; Kliesch S; Omran H
    PLoS Genet; 2021 Feb; 17(2):e1009306. PubMed ID: 33635866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.