These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38546323)

  • 1. Review and meta-analysis of the genetic Minimal Cut Set approach for gene essentiality prediction in cancer metabolism.
    Olaverri-Mendizabal D; Valcárcel LV; Barrena N; Rodríguez CJ; Planes FJ
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38546323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic lethality in large-scale integrated metabolic and regulatory network models of human cells.
    Barrena N; Valcárcel LV; Olaverri-Mendizabal D; Apaolaza I; Planes FJ
    NPJ Syst Biol Appl; 2023 Jul; 9(1):32. PubMed ID: 37454223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. gMCS: fast computation of genetic minimal cut sets in large networks.
    Apaolaza I; Valcarcel LV; Planes FJ
    Bioinformatics; 2019 Feb; 35(3):535-537. PubMed ID: 30052768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. gMCSpy: efficient and accurate computation of genetic minimal cut sets in Python.
    Rodriguez-Flores CJ; Barrena N; Olaverri-Mendizabal D; Ochoa I; Valcárcel LV; Planes FJ
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38748994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in-silico approach to predict and exploit synthetic lethality in cancer metabolism.
    Apaolaza I; San José-Eneriz E; Tobalina L; Miranda E; Garate L; Agirre X; Prósper F; Planes FJ
    Nat Commun; 2017 Sep; 8(1):459. PubMed ID: 28878380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism.
    Apaolaza I; San José-Enériz E; Valcarcel LV; Agirre X; Prosper F; Planes FJ
    PLoS Comput Biol; 2022 Mar; 18(3):e1009395. PubMed ID: 35286311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ELIMINATOR: essentiality analysis using multisystem networks and integer programming.
    Antoranz A; Ortiz M; Pey J
    BMC Bioinformatics; 2022 Aug; 23(1):324. PubMed ID: 35933325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells.
    Jaiswal A; Peddinti G; Akimov Y; Wennerberg K; Kuznetsov S; Tang J; Aittokallio T
    Genome Med; 2017 Jun; 9(1):51. PubMed ID: 28569207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ESS: A Tool for Genome-Scale Quantification of Essentiality Score for Reaction/Genes in Constraint-Based Modeling.
    Zhang C; Bidkhori G; Benfeitas R; Lee S; Arif M; Uhlén M; Mardinoglu A
    Front Physiol; 2018; 9():1355. PubMed ID: 30323767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic essentiality: Targeting tumor suppressor deficiencies in cancer.
    Zhao D; DePinho RA
    Bioessays; 2017 Aug; 39(8):. PubMed ID: 28675450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential metabolism for a minimal cell.
    Breuer M; Earnest TM; Merryman C; Wise KS; Sun L; Lynott MR; Hutchison CA; Smith HO; Lapek JD; Gonzalez DJ; de Crécy-Lagard V; Haas D; Hanson AD; Labhsetwar P; Glass JI; Luthey-Schulten Z
    Elife; 2019 Jan; 8():. PubMed ID: 30657448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting gene knockout effects from expression data.
    Rosenski J; Shifman S; Kaplan T
    BMC Med Genomics; 2023 Feb; 16(1):26. PubMed ID: 36803845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring cancer dependencies on metabolic genes from large-scale genetic screens.
    Lagziel S; Lee WD; Shlomi T
    BMC Biol; 2019 Apr; 17(1):37. PubMed ID: 31039782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resurrection from lethal knockouts: Bypass of gene essentiality.
    Du LL
    Biochem Biophys Res Commun; 2020 Jul; 528(3):405-412. PubMed ID: 32507598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Metabolic Modeling, Culturing, and Transcriptomics Explain Enhanced Virulence of Vibrio cholerae during Coinfection with Enterotoxigenic Escherichia coli.
    Abdel-Haleem AM; Ravikumar V; Ji B; Mineta K; Gao X; Nielsen J; Gojobori T; Mijakovic I
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32900868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational prediction of essential metabolic genes using constraint-based approaches.
    Basler G
    Methods Mol Biol; 2015; 1279():183-204. PubMed ID: 25636620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reframing gene essentiality in terms of adaptive flexibility.
    Guzmán GI; Olson CA; Hefner Y; Phaneuf PV; Catoiu E; Crepaldi LB; Micas LG; Palsson BO; Feist AM
    BMC Syst Biol; 2018 Dec; 12(1):143. PubMed ID: 30558585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Cancer-associated metabolic vulnerabilities by modeling multi-objective optimality in metabolism.
    Dai Z; Yang S; Xu L; Hu H; Liao K; Wang J; Wang Q; Gao S; Li B; Lai L
    Cell Commun Signal; 2019 Oct; 17(1):124. PubMed ID: 31601242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Gene Essentiality and Synthetic Lethality Information to Correct Yeast and CHO Cell Genome-Scale Models.
    Chowdhury R; Chowdhury A; Maranas CD
    Metabolites; 2015 Sep; 5(4):536-70. PubMed ID: 26426067
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.