These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38546447)
21. Insight into Chemical Recycling of Flexible Polyurethane Foams by Acidolysis. Grdadolnik M; Drinčić A; Oreški A; Onder OC; Utroša P; Pahovnik D; Žagar E ACS Sustain Chem Eng; 2022 Jan; 10(3):1323-1332. PubMed ID: 35096493 [TBL] [Abstract][Full Text] [Related]
22. Hydrogenative Depolymerization of Polyurethanes Catalyzed by a Manganese Pincer Complex. Zubar V; Haedler AT; Schütte M; Hashmi ASK; Schaub T ChemSusChem; 2022 Jan; 15(1):e202101606. PubMed ID: 34342135 [TBL] [Abstract][Full Text] [Related]
23. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Zafar U; Houlden A; Robson GD Appl Environ Microbiol; 2013 Dec; 79(23):7313-24. PubMed ID: 24056469 [TBL] [Abstract][Full Text] [Related]
24. Solving the plastic dilemma: the fungal and bacterial biodegradability of polyurethanes. Bhavsar P; Bhave M; Webb HK World J Microbiol Biotechnol; 2023 Mar; 39(5):122. PubMed ID: 36929307 [TBL] [Abstract][Full Text] [Related]
25. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry. Lattuati-Derieux A; Thao-Heu S; Lavédrine B J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901 [TBL] [Abstract][Full Text] [Related]
26. Controllable Degradation of Polyurethane Thermosets with Silaketal Linkages in Response to Weak Acid. Zhang S; Xu XQ; Liao S; Pan Q; Ma X; Wang Y ACS Macro Lett; 2022 Jul; 11(7):868-874. PubMed ID: 35762900 [TBL] [Abstract][Full Text] [Related]
27. Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol. Kiss G; Rusu G; Bandur G; Hulka I; Romecki D; Péter F Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073296 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of Manganese Catalysts for the Hydrogenative Deconstruction of Commercial and End-of-Life Polyurethane Samples. Gausas L; Donslund BS; Kristensen SK; Skrydstrup T ChemSusChem; 2022 Jan; 15(1):e202101705. PubMed ID: 34510781 [TBL] [Abstract][Full Text] [Related]
29. Depolymerization of the polyester-polyurethane by amidase GatA250 and enhancing the production of 4,4'-methylenedianiline with cutinase LCC. Xin K; Lu J; Zeng Q; Zhang T; Liu J; Zhou J; Dong W; Jiang M Biotechnol J; 2024 Apr; 19(4):e2300723. PubMed ID: 38622797 [TBL] [Abstract][Full Text] [Related]
30. Assessment of the economic recycling potential of a glycolysis treatment of rigid polyurethane foam waste: A case study from Thailand. Kanchanapiya P; Intaranon N; Tantisattayakul T J Environ Manage; 2021 Feb; 280():111638. PubMed ID: 33293164 [TBL] [Abstract][Full Text] [Related]
31. Glycolysis of Polyurethanes Composites Containing Nanosilica. Del Amo J; Borreguero AM; Ramos MJ; Rodríguez JF Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925763 [TBL] [Abstract][Full Text] [Related]
32. Synthesis of Waterborne Polyurethane Using Phosphorus-Modified Rigid Polyol and its Physical Properties. Jang T; Kim HJ; Jang JB; Kim TH; Lee W; Seo B; Ko WB; Lim CS Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33572930 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of rubber powder waste as reinforcement of the polyurethane derived from castor oil. Silva NGS; Cortat LICO; Orlando D; Mulinari DR Waste Manag; 2020 Oct; 116():131-139. PubMed ID: 32799094 [TBL] [Abstract][Full Text] [Related]
34. Urethanases for the Enzymatic Hydrolysis of Low Molecular Weight Carbamates and the Recycling of Polyurethanes. Branson Y; Söltl S; Buchmann C; Wei R; Schaffert L; Badenhorst CPS; Reisky L; Jäger G; Bornscheuer UT Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202216220. PubMed ID: 36591907 [TBL] [Abstract][Full Text] [Related]
35. Study on Green Degradation Process of Polyurethane Foam Based on Integral Utilization and Performance of Recycled Polyurethane Oil-Absorbing Foam. Peng S; Gong D; Zhou Y; Zhang C; Li Y; Zhang C; Sheng Y Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744329 [TBL] [Abstract][Full Text] [Related]
36. Biodegradation of aliphatic polyurethane foams in soil: Influence of amide linkages and supramolecular structure. Skleničková K; Suchopárová E; Abbrent S; Pokorný V; Kočková O; Nevoralová M; Cajthaml T; Strejček M; Uhlík O; Halecký M; Beneš H Sci Total Environ; 2024 Feb; 912():169062. PubMed ID: 38061651 [TBL] [Abstract][Full Text] [Related]
37. Review on disposal, recycling and management of waste polyurethane foams: A way ahead. Banik J; Chakraborty D; Rizwan M; Shaik AH; Chandan MR Waste Manag Res; 2023 Jun; 41(6):1063-1080. PubMed ID: 36644994 [TBL] [Abstract][Full Text] [Related]
38. A case for closed-loop recycling of post-consumer PET for automotive foams. Bedell M; Brown M; Kiziltas A; Mielewski D; Mukerjee S; Tabor R Waste Manag; 2018 Jan; 71():97-108. PubMed ID: 29113836 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of rigid polyurethane foams from phosphorylated biopolyols. de Haro JC; López-Pedrajas D; Pérez Á; Rodríguez JF; Carmona M Environ Sci Pollut Res Int; 2019 Feb; 26(4):3174-3183. PubMed ID: 28822032 [TBL] [Abstract][Full Text] [Related]
40. Impact of Bark-Sourced Building Blocks as Substitutes for Fossil-Derived Polyols on the Structural, Thermal, and Mechanical Properties of Polyurethane Networks. Arshanitsa A; Ponomarenko J; Pals M; Jashina L; Lauberts M Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688129 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]