These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38547514)

  • 1. Transferable Water Potentials Using Equivariant Neural Networks.
    Maxson T; Szilvási T
    J Phys Chem Lett; 2024 Apr; 15(14):3740-3747. PubMed ID: 38547514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transferability and Accuracy of Ionic Liquid Simulations with Equivariant Machine Learning Interatomic Potentials.
    Goodwin ZAH; Wenny MB; Yang JH; Cepellotti A; Ding J; Bystrom K; Duschatko BR; Johansson A; Sun L; Batzner S; Musaelian A; Mason JA; Kozinsky B; Molinari N
    J Phys Chem Lett; 2024 Aug; 15(30):7539-7547. PubMed ID: 39023916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts.
    Choyal V; Sagar N; Sai Gautam G
    J Chem Theory Comput; 2024 Jun; 20(11):4844-4856. PubMed ID: 38787289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy, transferability, and computational efficiency of interatomic potentials for simulations of carbon under extreme conditions.
    Willman JT; Gonzalez JM; Nguyen-Cong K; Hamel S; Lordi V; Oleynik II
    J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39193946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence.
    Zubatiuk T; Isayev O
    Acc Chem Res; 2021 Apr; 54(7):1575-1585. PubMed ID: 33715355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces.
    Focassio B; M Freitas LP; Schleder GR
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-field-enhanced neural network interactions: from local equivariant embedding to atom-in-molecule properties and long-range effects.
    Plé T; Lagardère L; Piquemal JP
    Chem Sci; 2023 Nov; 14(44):12554-12569. PubMed ID: 38020379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials.
    Mortazavi B; Zhuang X; Rabczuk T; Shapeev AV
    Mater Horiz; 2023 Jun; 10(6):1956-1968. PubMed ID: 37014053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Parametrization of Transferable Atomic Cluster Expansion for Water.
    Ibrahim E; Lysogorskiy Y; Drautz R
    J Chem Theory Comput; 2024 Dec; 20(24):11049-11057. PubMed ID: 39431422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equivariant Neural Networks Utilizing Molecular Clusters for Accurate Molecular Crystal Lattice Energy Predictions.
    Gupta AK; Stulajter MM; Shaidu Y; Neaton JB; de Jong WA
    ACS Omega; 2024 Sep; 9(38):40269-40282. PubMed ID: 39346862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
    Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B
    Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking structural evolution methods for training of machine learned interatomic potentials.
    Waters MJ; Rondinelli JM
    J Phys Condens Matter; 2022 Jul; 34(38):. PubMed ID: 35797983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linearized machine-learning interatomic potentials for non-magnetic elemental metals: Limitation of pairwise descriptors and trend of predictive power.
    Takahashi A; Seko A; Tanaka I
    J Chem Phys; 2018 Jun; 148(23):234106. PubMed ID: 29935515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Interatomic Potentials for Heterogeneous Catalysis.
    Tang D; Ketkaew R; Luber S
    Chemistry; 2024 Oct; 30(60):e202401148. PubMed ID: 39109600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane.
    Abedi M; Behler J; Goldsmith CF
    J Chem Theory Comput; 2023 Nov; 19(21):7825-7832. PubMed ID: 37902963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Molecular-Dynamics Simulations for Solid-Liquid Interfaces with Machine-Learning Interatomic Potentials.
    Hou P; Tian Y; Meng X
    Chemistry; 2024 Sep; 30(49):e202401373. PubMed ID: 38877181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferability of data-driven, many-body models for CO
    Yue S; Riera M; Ghosh R; Panagiotopoulos AZ; Paesani F
    J Chem Phys; 2022 Mar; 156(10):104503. PubMed ID: 35291793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations of equilibrium solubilities and structure of water in n-alkanes and polyethylene.
    Johansson E; Bolton K; Theodorou DN; Ahlström P
    J Chem Phys; 2007 Jun; 126(22):224902. PubMed ID: 17581078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice.
    Reddy SK; Straight SC; Bajaj P; Huy Pham C; Riera M; Moberg DR; Morales MA; Knight C; Götz AW; Paesani F
    J Chem Phys; 2016 Nov; 145(19):194504. PubMed ID: 27875875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Interatomic Potentials and Long-Range Physics.
    Anstine DM; Isayev O
    J Phys Chem A; 2023 Mar; 127(11):2417-2431. PubMed ID: 36802360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.