These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38547530)

  • 1. Phase diagram and crossover phases of topologically ordered graphene zigzag nanoribbons: role of localization effects.
    Le HA; Lee IH; Kim YH; Eric Yang SR
    J Phys Condens Matter; 2024 Apr; 36(26):. PubMed ID: 38547530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutual Information and Correlations across Topological Phase Transitions in Topologically Ordered Graphene Zigzag Nanoribbons.
    Lee IH; Le HA; Yang SE
    Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New disordered anyon phase of doped graphene zigzag nanoribbon.
    Kim YH; Lee HJ; Lee HY; Yang SE
    Sci Rep; 2022 Aug; 12(1):14551. PubMed ID: 36008453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soliton Fractional Charges in Graphene Nanoribbon and Polyacetylene: Similarities and Differences.
    Yang SE
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31207969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons.
    Blackwell RE; Zhao F; Brooks E; Zhu J; Piskun I; Wang S; Delgado A; Lee YL; Louie SG; Fischer FR
    Nature; 2021 Dec; 600(7890):647-652. PubMed ID: 34937899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protected Pseudohelical Edge States in Z_{2}-Trivial Proximitized Graphene.
    Frank T; Högl P; Gmitra M; Kochan D; Fabian J
    Phys Rev Lett; 2018 Apr; 120(15):156402. PubMed ID: 29756852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures.
    Zhang G; Li X; Wu G; Wang J; Culcer D; Kaxiras E; Zhang Z
    Nanoscale; 2014 Mar; 6(6):3259-67. PubMed ID: 24509485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entanglement convertibility by sweeping through the quantum phases of the alternating bonds XXZ chain.
    Tzeng YC; Dai L; Chung MC; Amico L; Kwek LC
    Sci Rep; 2016 May; 6():26453. PubMed ID: 27216970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soliton fractional charge of disordered graphene nanoribbon.
    Jeong YH; Eric Yang SR; Cha MC
    J Phys Condens Matter; 2019 Jul; 31(26):265601. PubMed ID: 30921770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Anomalous Hall Effects in Graphene from Proximity-Induced Uniform and Staggered Spin-Orbit and Exchange Coupling.
    Högl P; Frank T; Zollner K; Kochan D; Gmitra M; Fabian J
    Phys Rev Lett; 2020 Apr; 124(13):136403. PubMed ID: 32302179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the Magnetism of Topological End States in 5-Armchair Graphene Nanoribbons.
    Lawrence J; Brandimarte P; Berdonces-Layunta A; Mohammed MSG; Grewal A; Leon CC; Sánchez-Portal D; de Oteyza DG
    ACS Nano; 2020 Apr; 14(4):4499-4508. PubMed ID: 32101402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge State Engineering of Graphene Nanoribbons.
    Su X; Xue Z; Li G; Yu P
    Nano Lett; 2018 Sep; 18(9):5744-5751. PubMed ID: 30111118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological and Spectral Properties of Wavy Zigzag Nanoribbons.
    Arockiaraj M; Fiona JC; Kavitha SRJ; Shalini AJ; Balasubramanian K
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal quantum correlations in zigzag graphene nanoribbons.
    Tan XD; Mao QH
    J Phys Condens Matter; 2020 May; 32(18):185601. PubMed ID: 31940598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin, orbital and topological order in models of strongly correlated electrons.
    Brzezicki W
    J Phys Condens Matter; 2020 Jan; 32(2):023001. PubMed ID: 31519012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological Structure Realized in Cove-Edged Graphene Nanoribbons via Incorporation of Periodic Pentagon Rings.
    Zhu X; Li K; Liu J; Wang Z; Ding Z; Su Y; Yang B; Yan K; Li G; Yu P
    J Am Chem Soc; 2024 Mar; 146(11):7152-7158. PubMed ID: 38421279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons.
    Culchac FJ; Capaz RB
    Nanotechnology; 2016 Feb; 27(6):065707. PubMed ID: 26762781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge Disorder in Bottom-Up Zigzag Graphene Nanoribbons: Implications for Magnetism and Quantum Electronic Transport.
    Pizzochero M; Barin GB; Čerņevičs KN; Wang S; Ruffieux P; Fasel R; Yazyev OV
    J Phys Chem Lett; 2021 May; 12(19):4692-4696. PubMed ID: 33979153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.