These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38547872)

  • 1.
    Ullberg N; Filoramo A; Campidelli S; Derycke V
    ACS Nano; 2024 Apr; 18(14):9886-9894. PubMed ID: 38547872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Optical Reconfigurable Excitonic Charge States in Monolayer MoS
    Huang GY; Lin L; Zhao S; Li W; Deng X; Zhang S; Wang C; Li XZ; Zhang Y; Fang HH; Zou Y; Li P; Bai B; Sun HB; Fu T
    Nano Lett; 2023 Feb; 23(4):1514-1521. PubMed ID: 36730120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers.
    Yu Y; Yu Y; Huang L; Peng H; Xiong L; Cao L
    Nano Lett; 2017 Jun; 17(6):3613-3618. PubMed ID: 28505462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trion dynamics and charge photogeneration in MoS
    Yue YY; Zhao LY; Han DA; Wang L; Wang HY; Gao BR; Sun HB
    Phys Chem Chem Phys; 2021 Oct; 23(39):22430-22436. PubMed ID: 34585679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Exciton/Trion Dynamics to Spatially Monitor the Catalytic Activities of MoS
    Hsiao FH; Chung CC; Chiang CH; Feng WN; Tzeng WY; Lin HM; Tu CM; Wu HL; Wang YH; Woon WY; Chen HC; Chen CH; Lo CY; Lai MH; Chang YM; Lu LS; Chang WH; Chen CW; Luo CW
    ACS Nano; 2022 Mar; 16(3):4298-4307. PubMed ID: 35254822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Dead" Exciton Layer and Exciton Anisotropy of Bulk MoS
    Kravets VG; Zhukov AA; Holwill M; Novoselov KS; Grigorenko AN
    ACS Nano; 2022 Nov; 16(11):18637-18647. PubMed ID: 36351038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinch-Off Formation in Monolayer and Multilayers MoS
    Vaknin Y; Dagan R; Rosenwaks Y
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31207877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutral Exciton Diffusion in Monolayer MoS
    Uddin SZ; Kim H; Lorenzon M; Yeh M; Lien DH; Barnard ES; Htoon H; Weber-Bargioni A; Javey A
    ACS Nano; 2020 Oct; 14(10):13433-13440. PubMed ID: 32909735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films.
    Kim MS; Roy S; Lee J; Kim BG; Kim H; Park JH; Yun SJ; Han GH; Leem JY; Kim J
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28809-28815. PubMed ID: 27718557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitonic Effect Drives Ultrafast Transition in Two-Dimensional Transition Metal Dichalcogenides.
    Zheng SW; Wang HY; Wang H; Wang L
    J Phys Chem Lett; 2023 Oct; 14(41):9200-9206. PubMed ID: 37801730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Room-Temperature Exciton-Polariton Emission from Wide-Ranging 2D Semiconductors Coupled with a Broadband Mie Resonator.
    Fang J; Yao K; Wang M; Yu Z; Zhang T; Jiang T; Huang S; Korgel BA; Terrones M; Alù A; Zheng Y
    Nano Lett; 2023 Nov; 23(21):9803-9810. PubMed ID: 37879099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Assessment of Defective Regions in Monolayer MoS
    Minj A; Mootheri V; Banerjee S; Nalin Mehta A; Serron J; Hantschel T; Asselberghs I; Goux L; Kar GS; Heyns M; Lin DHC
    ACS Nano; 2024 Apr; 18(15):10653-10666. PubMed ID: 38556983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton manipulation in rippled transition metal dichalcogenides.
    Long C; Dai Y; Li J; Jin H
    Nanoscale; 2020 Nov; 12(41):21124-21130. PubMed ID: 33078184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bright excitonic multiplexing mediated by dark exciton transition in two-dimensional TMDCs at room temperature.
    Katznelson S; Cohn B; Sufrin S; Amit T; Mukherjee S; Kleiner V; Mohapatra P; Patsha A; Ismach A; Refaely-Abramson S; Hasman E; Koren E
    Mater Horiz; 2022 Mar; 9(3):1089-1098. PubMed ID: 35083477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface.
    Park JH; Sanne A; Guo Y; Amani M; Zhang K; Movva HCP; Robinson JA; Javey A; Robertson J; Banerjee SK; Kummel AC
    Sci Adv; 2017 Oct; 3(10):e1701661. PubMed ID: 29062892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the Hetero-Interface of Electrolyte/2D Materials in an Electric Double Layer Device.
    Hu X; Jiang H; Lu LX; Zhao SX; Li Y; Zhen L; Xu CY
    Small; 2023 Oct; 19(43):e2301798. PubMed ID: 37357158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of New Excitons in Transition Metal Dichalcogenide-Perovskite Oxide System.
    Yin X; Yang M; Tang CS; Wang Q; Xu L; Wu J; Trevisanutto PE; Zeng S; Chin XY; Asmara TC; Feng YP; Ariando A; Chhowalla M; Wang SJ; Zhang W; Rusydi A; Wee ATS
    Adv Sci (Weinh); 2019 Jun; 6(12):1900446. PubMed ID: 31380174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically Confined Electroluminescence of Neutral Excitons in WSe
    Shin JC; Jeong JH; Kwon J; Kim YH; Kim B; Woo SJ; Woo KY; Cho M; Watanabe K; Taniguchi T; Kim YD; Cho YH; Lee TW; Hone J; Lee CH; Lee GH
    Adv Mater; 2024 Apr; 36(14):e2310498. PubMed ID: 38169481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy.
    Su W; Kumar N; Mignuzzi S; Crain J; Roy D
    Nanoscale; 2016 May; 8(20):10564-9. PubMed ID: 27152366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.