These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38548388)

  • 1. Linkage and association mapping in multi-parental populations reveal the genetic basis of carotenoid variation in maize kernels.
    Yin P; Fu X; Feng H; Yang Y; Xu J; Zhang X; Wang M; Ji S; Zhao B; Fang H; Du X; Li Y; Hu S; Li K; Xu S; Li Z; Liu F; Xiao Y; Wang Y; Li J; Yang X
    Plant Biotechnol J; 2024 Aug; 22(8):2312-2326. PubMed ID: 38548388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic basis of kernel starch content decoded in a maize multi-parent population.
    Hu S; Wang M; Zhang X; Chen W; Song X; Fu X; Fang H; Xu J; Xiao Y; Li Y; Bai G; Li J; Yang X
    Plant Biotechnol J; 2021 Nov; 19(11):2192-2205. PubMed ID: 34077617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eleven biosynthetic genes explain the majority of natural variation in carotenoid levels in maize grain.
    Diepenbrock CH; Ilut DC; Magallanes-Lundback M; Kandianis CB; Lipka AE; Bradbury PJ; Holland JB; Hamilton JP; Wooldridge E; Vaillancourt B; G Ngora-Castillo E; Wallace JG; Cepela J; Mateos-Hernandez M; Owens BF; Tiede T; Buckler ES; Rocheford T; Buell CR; Gore MA; DellaPenna D
    Plant Cell; 2021 May; 33(4):882-900. PubMed ID: 33681994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.
    Owens BF; Lipka AE; Magallanes-Lundback M; Tiede T; Diepenbrock CH; Kandianis CB; Kim E; Cepela J; Mateos-Hernandez M; Buell CR; Buckler ES; DellaPenna D; Gore MA; Rocheford T
    Genetics; 2014 Dec; 198(4):1699-716. PubMed ID: 25258377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic architecture controlling variation in grain carotenoid composition and concentrations in two maize populations.
    Kandianis CB; Stevens R; Liu W; Palacios N; Montgomery K; Pixley K; White WS; Rocheford T
    Theor Appl Genet; 2013 Nov; 126(11):2879-95. PubMed ID: 24042570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses.
    Wang H; Xu S; Fan Y; Liu N; Zhan W; Liu H; Xiao Y; Li K; Pan Q; Li W; Deng M; Liu J; Jin M; Yang X; Li J; Li Q; Yan J
    Plant Biotechnol J; 2018 Aug; 16(8):1464-1475. PubMed ID: 29356296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Mapping in Two RIL Populations Refines Major "QTL Hotspot" Regions for Seed Size and Shape in Soybean (
    Hina A; Cao Y; Song S; Li S; Sharmin RA; Elattar MA; Bhat JA; Zhao T
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32033213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel.
    Wen W; Liu H; Zhou Y; Jin M; Yang N; Li D; Luo J; Xiao Y; Pan Q; Tohge T; Fernie AR; Yan J
    Plant Physiol; 2016 Jan; 170(1):136-46. PubMed ID: 26556794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population.
    Wang T; Wang M; Hu S; Xiao Y; Tong H; Pan Q; Xue J; Yan J; Li J; Yang X
    BMC Plant Biol; 2015 Dec; 15():288. PubMed ID: 26654531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic basis of maize stalk strength decoded via linkage and association mapping.
    Zhao B; Li K; Wang M; Liu Z; Yin P; Wang W; Li Z; Li X; Zhang L; Han Y; Li J; Yang X
    Plant J; 2024 Mar; 117(5):1558-1573. PubMed ID: 38113320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic basis of kernel nutritional traits during maize domestication and improvement.
    Fang H; Fu X; Wang Y; Xu J; Feng H; Li W; Xu J; Jittham O; Zhang X; Zhang L; Yang N; Xu G; Wang M; Li X; Li J; Yan J; Yang X
    Plant J; 2020 Jan; 101(2):278-292. PubMed ID: 31529523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linkage mapping combined with GWAS revealed the genetic structural relationship and candidate genes of maize flowering time-related traits.
    Shi J; Wang Y; Wang C; Wang L; Zeng W; Han G; Qiu C; Wang T; Tao Z; Wang K; Huang S; Yu S; Wang W; Chen H; Chen C; He C; Wang H; Zhu P; Hu Y; Zhang X; Xie C; Lu X; Li P
    BMC Plant Biol; 2022 Jul; 22(1):328. PubMed ID: 35799118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean Under Multiple Environments Using High-Density Bin Map.
    Karikari B; Li S; Bhat JA; Cao Y; Kong J; Yang J; Gai J; Zhao T
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic basis of maize kernel oil-related traits revealed by high-density SNP markers in a recombinant inbred line population.
    Fang H; Fu X; Ge H; Zhang A; Shan T; Wang Y; Li P; Wang B
    BMC Plant Biol; 2021 Jul; 21(1):344. PubMed ID: 34289812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Loci Controlling Carotenoid Biosynthesis in Diverse Tropical Maize Lines.
    Azmach G; Menkir A; Spillane C; Gedil M
    G3 (Bethesda); 2018 Mar; 8(3):1049-1065. PubMed ID: 29378820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of Linkage Mapping, GWAS, and GP to Dissect the Genetic Basis of Common Rust Resistance in Tropical Maize Germplasm.
    Kibe M; Nyaga C; Nair SK; Beyene Y; Das B; M SL; Bright JM; Makumbi D; Kinyua J; Olsen MS; Prasanna BM; Gowda M
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Quantitative Trait Loci Controlling Ethylene Production in Germinating Seeds in Maize (Zea mays L.).
    Kong D; Fu X; Jia X; Wang W; Li Y; Li J; Yang X; Ju C
    Sci Rep; 2020 Feb; 10(1):1677. PubMed ID: 32015470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of two new QTLs of maize (Zea mays L.) underlying kernel row number using the HNAU-NAM1 population.
    Fei X; Wang Y; Zheng Y; Shen X; E L; Ding J; Lai J; Song W; Zhao H
    BMC Genomics; 2022 Aug; 23(1):593. PubMed ID: 35971070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetic architecture of amino acids dissection by association and linkage analysis in maize.
    Deng M; Li D; Luo J; Xiao Y; Liu H; Pan Q; Zhang X; Jin M; Zhao M; Yan J
    Plant Biotechnol J; 2017 Oct; 15(10):1250-1263. PubMed ID: 28218981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm.
    Sitonik C; Suresh LM; Beyene Y; Olsen MS; Makumbi D; Oliver K; Das B; Bright JM; Mugo S; Crossa J; Tarekegne A; Prasanna BM; Gowda M
    Theor Appl Genet; 2019 Aug; 132(8):2381-2399. PubMed ID: 31098757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.