These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 38548858)
1. 3D cotton-type anisotropic biomimetic scaffold with low fiber motion electrospun via a sharply inclined array collector for induced osteogenesis. Cho SH; Lee S; Kim JI Sci Rep; 2024 Mar; 14(1):7365. PubMed ID: 38548858 [TBL] [Abstract][Full Text] [Related]
2. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Carvalho MS; Silva JC; Udangawa RN; Cabral JMS; Ferreira FC; da Silva CL; Linhardt RJ; Vashishth D Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():479-490. PubMed ID: 30889723 [TBL] [Abstract][Full Text] [Related]
3. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying. Hejazi F; Mirzadeh H J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014 [TBL] [Abstract][Full Text] [Related]
4. Harnessing the Topography of 3D Spongy-Like Electrospun Bundled Fibrous Scaffold via a Sharply Inclined Array Collector. Cho SH; Kim JI; Kim CS; Park CH; Kim IG Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31484363 [TBL] [Abstract][Full Text] [Related]
5. Polyhydroxybutyrate-based osteoinductive mineralized electrospun structures that mimic components and tissue interfaces of the osteon for bone tissue engineering. Sriram M; Priya S; Katti DS Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38471166 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800 [TBL] [Abstract][Full Text] [Related]
7. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Phipps MC; Clem WC; Grunda JM; Clines GA; Bellis SL Biomaterials; 2012 Jan; 33(2):524-34. PubMed ID: 22014462 [TBL] [Abstract][Full Text] [Related]
8. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. Brennan CM; Eichholz KF; Hoey DA Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493 [TBL] [Abstract][Full Text] [Related]
9. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388 [TBL] [Abstract][Full Text] [Related]
10. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells. Yao T; Chen H; Baker MB; Moroni L Tissue Eng Part C Methods; 2020 Jan; 26(1):11-22. PubMed ID: 31774033 [TBL] [Abstract][Full Text] [Related]
11. Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. Shim IK; Jung MR; Kim KH; Seol YJ; Park YJ; Park WH; Lee SJ J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):150-60. PubMed ID: 20725960 [TBL] [Abstract][Full Text] [Related]
12. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
13. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596 [TBL] [Abstract][Full Text] [Related]
14. Engineering the microstructure of electrospun fibrous scaffolds by microtopography. Cheng Q; Lee BL; Komvopoulos K; Li S Biomacromolecules; 2013 May; 14(5):1349-60. PubMed ID: 23534553 [TBL] [Abstract][Full Text] [Related]
15. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Song J; Zhu G; Wang L; An G; Shi X; Wang Y Biofabrication; 2017 Feb; 9(1):015018. PubMed ID: 28140360 [TBL] [Abstract][Full Text] [Related]
16. Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo. Pu J; Yuan F; Li S; Komvopoulos K Acta Biomater; 2015 Feb; 13():131-41. PubMed ID: 25463495 [TBL] [Abstract][Full Text] [Related]
17. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Brennan MÁ; Renaud A; Gamblin AL; D'Arros C; Nedellec S; Trichet V; Layrolle P Biomed Mater; 2015 Aug; 10(4):045019. PubMed ID: 26238732 [TBL] [Abstract][Full Text] [Related]
18. Hyaluronic Acid and a Short Peptide Improve the Performance of a PCL Electrospun Fibrous Scaffold Designed for Bone Tissue Engineering Applications. Rachmiel D; Anconina I; Rudnick-Glick S; Halperin-Sternfeld M; Adler-Abramovich L; Sitt A Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33808946 [TBL] [Abstract][Full Text] [Related]
19. Interpenetrated nano- and submicro-fibrous biomimetic scaffolds towards enhanced mechanical and biological performances. Luo H; Gan D; Gama M; Tu J; Yao F; Zhang Q; Ao H; Yang Z; Li J; Wan Y Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110416. PubMed ID: 31923960 [TBL] [Abstract][Full Text] [Related]
20. Macro- and microporous polycaprolactone/duck's feet collagen scaffold fabricated by combining facile phase separation and particulate leaching techniques to enhance osteogenesis for bone tissue engineering. Song Y; Choi JH; Tumursukh NE; Kim NE; Jeon GY; Kim SE; Kim SI; Song JE; Elçin YM; Khang G J Biomater Sci Polym Ed; 2022 Jun; 33(8):1025-1042. PubMed ID: 35118913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]