These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38548876)
1. Mechanical property dependence on compositional heterogeneity in Co-P metallic nanoglasses. Li T; Li N; Zhang S; Zheng G Sci Rep; 2024 Mar; 14(1):7458. PubMed ID: 38548876 [TBL] [Abstract][Full Text] [Related]
2. The Modulation of Compositional Heterogeneity for Controlling Shear Banding in Co-P Metallic Nanoglasses. Li T; Li N; Yu T; Zheng G Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921869 [TBL] [Abstract][Full Text] [Related]
3. Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu-Zr nanoglasses. Şopu D; Albe K Beilstein J Nanotechnol; 2015; 6():537-545. PubMed ID: 33585150 [TBL] [Abstract][Full Text] [Related]
4. Atomic structure and structural stability of Sc75Fe25 nanoglasses. Fang JX; Vainio U; Puff W; Würschum R; Wang XL; Wang D; Ghafari M; Jiang F; Sun J; Hahn H; Gleiter H Nano Lett; 2012 Jan; 12(1):458-63. PubMed ID: 22122554 [TBL] [Abstract][Full Text] [Related]
5. Metallic Nanoglasses with Promoted β-Relaxation and Tensile Plasticity. Yang Q; Pei CQ; Yu HB; Feng T Nano Lett; 2021 Jul; 21(14):6051-6056. PubMed ID: 34240612 [TBL] [Abstract][Full Text] [Related]
6. Balancing strength, hardness and ductility of Cu Jian WR; Wang L; Yao XH; Luo SN Nanotechnology; 2018 Jan; 29(2):025701. PubMed ID: 29211689 [TBL] [Abstract][Full Text] [Related]
7. Nanoglasses: a new kind of noncrystalline materials. Gleiter H Beilstein J Nanotechnol; 2013 Sep; 4():517-33. PubMed ID: 24062978 [TBL] [Abstract][Full Text] [Related]
8. Excess free volume and structural properties of inert gas condensation synthesized nanoparticles based CuZr nanoglasses. Zheng K; Yuan S; Hahn H; Branicio PS Sci Rep; 2021 Sep; 11(1):19246. PubMed ID: 34584145 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling. Liu WH; Sun BA; Gleiter H; Lan S; Tong Y; Wang XL; Hahn H; Yang Y; Kai JJ; Liu CT Nano Lett; 2018 Jul; 18(7):4188-4194. PubMed ID: 29869884 [TBL] [Abstract][Full Text] [Related]
10. Improved ductility of Cu64Zr36 metallic glass/Cu nanocomposites via phase and grain boundaries. Jian WR; Wang L; Li B; Yao XH; Luo SN Nanotechnology; 2016 Apr; 27(17):175701. PubMed ID: 26965457 [TBL] [Abstract][Full Text] [Related]
11. Multiscale Manufacturing of Amorphous Alloys by a Facile Electrodeposition Approach and Their Property Dependence on the Local Atomic Order. Sadeghilaridjani M; Yang YC; Hasannaeimi V; Mahajan C; Jha S; Pole M; Xia Z; Mukherjee S ACS Appl Mater Interfaces; 2021 Feb; 13(7):9260-9271. PubMed ID: 33587605 [TBL] [Abstract][Full Text] [Related]
12. Key factors affecting mechanical behavior of metallic glass nanowires. Zhang Q; Li QK; Li M Sci Rep; 2017 Jan; 7():41365. PubMed ID: 28134292 [TBL] [Abstract][Full Text] [Related]
19. Critical Analysis of an FeP Empirical Potential Employed to Study the Fracture of Metallic Glasses. He Y; Yi P; Falk ML Phys Rev Lett; 2019 Jan; 122(3):035501. PubMed ID: 30735425 [TBL] [Abstract][Full Text] [Related]
20. Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation. Caron A; Bennewitz R Beilstein J Nanotechnol; 2015; 6():1721-32. PubMed ID: 26425424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]