These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38549012)

  • 21. Reproducibility assessment of relative quantitation strategies for LC-MS based proteomics.
    Kim YJ; Zhan P; Feild B; Ruben SM; He T
    Anal Chem; 2007 Aug; 79(15):5651-8. PubMed ID: 17580949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods and Algorithms for Quantitative Proteomics by Mass Spectrometry.
    Matthiesen R; Carvalho AS
    Methods Mol Biol; 2020; 2051():161-197. PubMed ID: 31552629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mass spectrometry in the discovery of peptides involved in intercellular communication: From targeted to untargeted peptidomics approaches.
    Fan KT; Hsu CW; Chen YR
    Mass Spectrom Rev; 2023; 42(6):2404-2425. PubMed ID: 35765846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.
    Goeminne LJE; Gevaert K; Clement L
    J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast and Reliable Quantitative Peptidomics with labelpepmatch.
    Verdonck R; De Haes W; Cardoen D; Menschaert G; Huhn T; Landuyt B; Baggerman G; Boonen K; Wenseleers T; Schoofs L
    J Proteome Res; 2016 Mar; 15(3):1080-9. PubMed ID: 26828777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of sample preparation on analysis of human milk endogenous peptides using liquid chromatography-tandem mass spectrometry].
    Yu W; Yu Y; Wang W; Li Y; Szeto IM; Jin Y
    Se Pu; 2021 May; 39(5):463-471. PubMed ID: 34227330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative peptidomics of mice lacking peptide-processing enzymes.
    Wardman J; Fricker LD
    Methods Mol Biol; 2011; 768():307-23. PubMed ID: 21805251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying and Measuring Endogenous Peptides through Peptidomics.
    Checco JW
    ACS Chem Neurosci; 2023 Oct; 14(20):3728-3731. PubMed ID: 37751547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A label-free nano-liquid chromatography-mass spectrometry approach for quantitative serum peptidomics in Crohn's disease patients.
    Nanni P; Levander F; Roda G; Caponi A; James P; Roda A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):3127-36. PubMed ID: 19683480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-Free Quantitative Proteomics in Plant.
    Wang R; Zhou P; Pan Y; Zheng L; Dong X; Shen R; Lan P
    Methods Mol Biol; 2023; 2665():75-83. PubMed ID: 37166594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of label-free quantitative peptidomics for the identification of urinary biomarkers of kidney chronic allograft dysfunction.
    Quintana LF; Campistol JM; Alcolea MP; Bañon-Maneus E; Sol-González A; Cutillas PR
    Mol Cell Proteomics; 2009 Jul; 8(7):1658-73. PubMed ID: 19357086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of endogenous peptide stereochemistry using liquid chromatography-mass spectrometry-based spiking experiments.
    Yussif BM; Checco JW
    Methods Enzymol; 2022; 663():205-234. PubMed ID: 35168790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An overview of label-free quantitation methods in proteomics by mass spectrometry.
    Wong JW; Cagney G
    Methods Mol Biol; 2010; 604():273-83. PubMed ID: 20013377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative protein profiling by mass spectrometry using label-free proteomics.
    Haqqani AS; Kelly JF; Stanimirovic DB
    Methods Mol Biol; 2008; 439():241-56. PubMed ID: 18370108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes.
    Wang G; Wu WW; Zeng W; Chou CL; Shen RF
    J Proteome Res; 2006 May; 5(5):1214-23. PubMed ID: 16674111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitation of endogenous peptides using mass spectrometry based methods.
    Romanova EV; Dowd SE; Sweedler JV
    Curr Opin Chem Biol; 2013 Oct; 17(5):801-8. PubMed ID: 23790312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data.
    Webb-Robertson BJ; McCue LA; Waters KM; Matzke MM; Jacobs JM; Metz TO; Varnum SM; Pounds JG
    J Proteome Res; 2010 Nov; 9(11):5748-56. PubMed ID: 20831241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methods for peptide and protein quantitation by liquid chromatography-multiple reaction monitoring mass spectrometry.
    Zhang H; Liu Q; Zimmerman LJ; Ham AJ; Slebos RJ; Rahman J; Kikuchi T; Massion PP; Carbone DP; Billheimer D; Liebler DC
    Mol Cell Proteomics; 2011 Jun; 10(6):M110.006593. PubMed ID: 21357624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices.
    Finoulst I; Pinkse M; Van Dongen W; Verhaert P
    J Biomed Biotechnol; 2011; 2011():245291. PubMed ID: 22203783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automation of peptide desalting for proteomic liquid chromatography - tandem mass spectrometry by centrifugal microfluidics.
    Klatt JN; Dinh TJ; Schilling O; Zengerle R; Schmidt F; Hutzenlaub T; Paust N
    Lab Chip; 2021 Jun; 21(11):2255-2264. PubMed ID: 33908535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.