These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38549046)

  • 1. Feature-specific quantile normalization and feature-specific mean-variance normalization deliver robust bi-directional classification and feature selection performance between microarray and RNAseq data.
    Skubleny D; Ghosh S; Spratlin J; Schiller DE; Rayat GR
    BMC Bioinformatics; 2024 Mar; 25(1):136. PubMed ID: 38549046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data.
    Franks JM; Cai G; Whitfield ML
    Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-platform normalization enables machine learning model training on microarray and RNA-seq data simultaneously.
    Foltz SM; Greene CS; Taroni JN
    Commun Biol; 2023 Feb; 6(1):222. PubMed ID: 36841852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to do quantile normalization correctly for gene expression data analyses.
    Zhao Y; Wong L; Goh WWB
    Sci Rep; 2020 Sep; 10(1):15534. PubMed ID: 32968196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of normalization on miRNA microarray expression profiling.
    Pradervand S; Weber J; Thomas J; Bueno M; Wirapati P; Lefort K; Dotto GP; Harshman K
    RNA; 2009 Mar; 15(3):493-501. PubMed ID: 19176604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-platform normalization of microarray and RNA-seq data for machine learning applications.
    Thompson JA; Tan J; Greene CS
    PeerJ; 2016; 4():e1621. PubMed ID: 26844019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes.
    Warnat P; Eils R; Brors B
    BMC Bioinformatics; 2005 Nov; 6():265. PubMed ID: 16271137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The feature selection bias problem in relation to high-dimensional gene data.
    Krawczuk J; Łukaszuk T
    Artif Intell Med; 2016 Jan; 66():63-71. PubMed ID: 26674595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs--a comparative study.
    Meyer SU; Kaiser S; Wagner C; Thirion C; Pfaffl MW
    PLoS One; 2012; 7(6):e38946. PubMed ID: 22723911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of breast cancer metastasis by gene expression profiles: a comparison of metagenes and single genes.
    Burton M; Thomassen M; Tan Q; Kruse TA
    Cancer Inform; 2012; 11():193-217. PubMed ID: 23304070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array.
    Wang B; Howel P; Bruheim S; Ju J; Owen LB; Fodstad O; Xi Y
    PLoS One; 2011 Feb; 6(2):e17167. PubMed ID: 21347261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture.
    Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B
    Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of feature selection methods for cross-laboratory microarray analysis.
    Liu HC; Peng PC; Hsieh TC; Yeh TC; Lin CJ; Chen CY; Hou JY; Shih LY; Liang DC
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):593-604. PubMed ID: 24091394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data.
    Liu Q; Sung AH; Chen Z; Liu J; Huang X; Deng Y
    PLoS One; 2009 Dec; 4(12):e8250. PubMed ID: 20011240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data.
    Müller C; Schillert A; Röthemeier C; Trégouët DA; Proust C; Binder H; Pfeiffer N; Beutel M; Lackner KJ; Schnabel RB; Tiret L; Wild PS; Blankenberg S; Zeller T; Ziegler A
    PLoS One; 2016; 11(6):e0156594. PubMed ID: 27272489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of transcriptomics data normalization for survival risk prediction.
    Ni A; Qin LX
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34245143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient feature selection and classification for microarray data.
    Li Z; Xie W; Liu T
    PLoS One; 2018; 13(8):e0202167. PubMed ID: 30125332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods.
    Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM
    BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A blocking strategy to improve gene selection for classification of gene expression data.
    Bontempi G
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):293-300. PubMed ID: 17473321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of different machine learning methods on microarray gene expression data.
    Pirooznia M; Yang JY; Yang MQ; Deng Y
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S13. PubMed ID: 18366602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.