BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38549250)

  • 1. Thermal limits of survival and reproduction depend on stress duration: A case study of Drosophila suzukii.
    Ørsted M; Willot Q; Olsen AK; Kongsgaard V; Overgaard J
    Ecol Lett; 2024 Mar; 27(3):e14421. PubMed ID: 38549250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of short- and long-term heat stress on reproductive potential of Drosophila suzukii Matsumura (Diptera: Drosophilidae).
    Evans RK; Toews MD; Sial AA
    J Therm Biol; 2018 Dec; 78():92-99. PubMed ID: 30509672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation, duration and intensity of cold exposure determine the rate of cold stress accumulation and mortality in Drosophila suzukii.
    Tarapacki P; Jørgensen LB; Sørensen JG; Andersen MK; Colinet H; Overgaard J
    J Insect Physiol; 2021; 135():104323. PubMed ID: 34717940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genetic basis and adult reproductive consequences of developmental thermal plasticity.
    Rodrigues LR; Zwoinska MK; Wiberg RAW; Snook RR
    J Anim Ecol; 2022 Jun; 91(6):1119-1134. PubMed ID: 35060127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila (Drosophila suzukii).
    Enriquez T; Ruel D; Charrier M; Colinet H
    Insect Sci; 2020 Apr; 27(2):317-335. PubMed ID: 30381878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basal tolerance to heat and cold exposure of the spotted wing drosophila,
    Enriquez T; Colinet H
    PeerJ; 2017; 5():e3112. PubMed ID: 28348931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold.
    Plantamp C; Salort K; Gibert P; Dumet A; Mialdea G; Mondy N; Voituron Y
    J Insect Physiol; 2016 Jun; 89():28-36. PubMed ID: 27040270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural dysfunction correlates with heat coma and CT
    Jørgensen LB; Robertson RM; Overgaard J
    J Exp Biol; 2020 Jul; 223(Pt 13):. PubMed ID: 32434804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuating heat stress during development exposes reproductive costs and putative benefits.
    Rodrigues LR; McDermott HA; Villanueva I; Djukarić J; Ruf LC; Amcoff M; Snook RR
    J Anim Ecol; 2022 Feb; 91(2):391-403. PubMed ID: 34775602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beneficial developmental acclimation in reproductive performance under cold but not heat stress.
    Simões P; Santos MA; Carromeu-Santos A; Quina AS; Santos M; Matos M
    J Therm Biol; 2020 May; 90():102580. PubMed ID: 32479384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Tolerances of the Spotted-Wing Drosophila Drosophila suzukii (Diptera: Drosophilidae).
    Ryan GD; Emiljanowicz L; Wilkinson F; Kornya M; Newman JA
    J Econ Entomol; 2016 Apr; 109(2):746-52. PubMed ID: 26880397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.
    Toxopeus J; Jakobs R; Ferguson LV; Gariepy TD; Sinclair BJ
    J Insect Physiol; 2016 Jun; 89():37-51. PubMed ID: 27039032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of the seasonal abundance of the invasive pest Drosophila suzukii reveal temperature extremes determine population activity potential.
    Ørsted M; Lye J; Umina PA; Maino JL
    Pest Manag Sci; 2021 Oct; 77(10):4555-4563. PubMed ID: 34085385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG; Kristensen TN; Loeschcke V; Schou MF
    J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses in thermal tolerance and daily activity rhythm to urban stress in
    Sato A; Takahashi Y
    Ecol Evol; 2022 Dec; 12(12):e9616. PubMed ID: 36518620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic Responses to and Genetic Architecture of Sterility Following Exposure to Sub-Lethal Temperature During Development.
    Zwoinska MK; Rodrigues LR; Slate J; Snook RR
    Front Genet; 2020; 11():573. PubMed ID: 32582294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae).
    Tarusikirwa VL; Mutamiswa R; English S; Chidawanyika F; Nyamukondiwa C
    J Therm Biol; 2020 May; 90():102598. PubMed ID: 32479393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental Acclimation of Drosophila suzukii (Diptera: Drosophilidae) and Its Effect on Diapause and Winter Stress Tolerance.
    Wallingford AK; Loeb GM
    Environ Entomol; 2016 Aug; 45(4):1081-9. PubMed ID: 27412194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aged virgin adults respond to extreme heat events with phenotypic plasticity in an invasive species, Drosophila suzukii.
    Xue Q; Ma CS
    J Insect Physiol; 2020; 121():104016. PubMed ID: 31930976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.