These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38549767)
1. A Siamese ResNeXt network for predicting carotid intimal thickness of patients with T2DM from fundus images. Gong A; Fu W; Li H; Guo N; Pan T Front Endocrinol (Lausanne); 2024; 15():1364519. PubMed ID: 38549767 [TBL] [Abstract][Full Text] [Related]
2. Automated fundus ultrasound image classification based on siamese convolutional neural networks with multi-attention. Tan J; Dong Y; Li J BMC Med Imaging; 2023 Jul; 23(1):89. PubMed ID: 37415102 [TBL] [Abstract][Full Text] [Related]
3. Pattern classification of interstitial lung diseases from computed tomography images using a ResNet-based network with a split-transform-merge strategy and split attention. Chen JX; Shen YC; Peng SL; Chen YW; Fang HY; Lan JL; Shih CT Phys Eng Sci Med; 2024 Jun; 47(2):755-767. PubMed ID: 38436886 [TBL] [Abstract][Full Text] [Related]
4. Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort. Biswas M; Kuppili V; Araki T; Edla DR; Godia EC; Saba L; Suri HS; Omerzu T; Laird JR; Khanna NN; Nicolaides A; Suri JS Comput Biol Med; 2018 Jul; 98():100-117. PubMed ID: 29778925 [TBL] [Abstract][Full Text] [Related]
5. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images. Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702 [TBL] [Abstract][Full Text] [Related]
6. Relationship between carotid intima-media thickness and carotid artery stiffness assessed by ultrafast ultrasound imaging in patients with type 2 diabetes. Pan FS; Xu M; Yu L; Luo J; Li MY; Liang JY; Zheng YL; Xie XY Eur J Radiol; 2019 Feb; 111():34-40. PubMed ID: 30691662 [TBL] [Abstract][Full Text] [Related]
7. Feature fusion Siamese network for breast cancer detection comparing current and prior mammograms. Bai J; Jin A; Wang T; Yang C; Nabavi S Med Phys; 2022 Jun; 49(6):3654-3669. PubMed ID: 35271746 [TBL] [Abstract][Full Text] [Related]
8. Semantic segmentation with DenseNets for carotid artery ultrasound plaque segmentation and CIMT estimation. Vila MDM; Remeseiro B; Grau M; Elosua R; Betriu À; Fernandez-Giraldez E; Igual L Artif Intell Med; 2020 Mar; 103():101784. PubMed ID: 32143791 [TBL] [Abstract][Full Text] [Related]
9. Investigating Temporal Features of Carotid Intima-Media Thickness from Ultrasound Imaging with Recurrent Neural Networks. Jing M; Owen K; Namee BM; Menown IBA; McLaughlin J Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083237 [TBL] [Abstract][Full Text] [Related]
10. [Establishment and test results of an artificial intelligence burn depth recognition model based on convolutional neural network]. He ZY; Wang Y; Zhang PH; Zuo K; Liang PF; Zeng JZ; Zhou ST; Guo L; Huang MT; Cui X Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1070-1074. PubMed ID: 33238691 [No Abstract] [Full Text] [Related]
11. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs. Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285 [TBL] [Abstract][Full Text] [Related]
12. CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction. Yang Z; Tong K; Jin S; Wang S; Yang C; Jiang F BMC Bioinformatics; 2023 Mar; 24(1):110. PubMed ID: 36959539 [TBL] [Abstract][Full Text] [Related]
13. Research on Assistant Diagnosis of Fundus Optic Neuropathy Based on Deep Learning. Wang C; Zhang Y; Xu S; Liu Y; Xie L; Wu C; Yang Q; Chu Y; Ye Q Curr Eye Res; 2023 Jan; 48(1):51-59. PubMed ID: 36264060 [TBL] [Abstract][Full Text] [Related]
14. Classification of Carotid Artery Intima Media Thickness Ultrasound Images with Deep Learning. Savaş S; Topaloğlu N; Kazcı Ö; Koşar PN J Med Syst; 2019 Jul; 43(8):273. PubMed ID: 31278481 [TBL] [Abstract][Full Text] [Related]
15. Efficacy for Differentiating Nonglaucomatous Versus Glaucomatous Optic Neuropathy Using Deep Learning Systems. Yang HK; Kim YJ; Sung JY; Kim DH; Kim KG; Hwang JM Am J Ophthalmol; 2020 Aug; 216():140-146. PubMed ID: 32247778 [TBL] [Abstract][Full Text] [Related]
16. An interpretable artificial intelligence model based on CT for prognosis of intracerebral hemorrhage: a multicenter study. Zhang H; Yang YF; Song XL; Hu HJ; Yang YY; Zhu X; Yang C BMC Med Imaging; 2024 Jul; 24(1):170. PubMed ID: 38982357 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning Models for the Screening of Cognitive Impairment Using Multimodal Fundus Images. Shi XH; Ju L; Dong L; Zhang RH; Shao L; Yan YN; Wang YX; Fu XF; Chen YZ; Ge ZY; Wei WB Ophthalmol Retina; 2024 Jul; 8(7):666-677. PubMed ID: 38280426 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the Diagnostic Accuracy of Sacroiliitis: A Machine Learning Approach Applied to Computed Tomography Imaging. Fu Q; Yuan X; Han X; Wang W; Zhang J; Yuan X Br J Hosp Med (Lond); 2024 Aug; 85(8):1-13. PubMed ID: 39212564 [No Abstract] [Full Text] [Related]
19. High neutrophil-to-lymphocyte ratio is associated with increased carotid artery intima-media thickness in type 2 diabetes. Li X; Shen J; Lu Z; Chen M; Fang X; Wang G J Diabetes Investig; 2017 Jan; 8(1):101-107. PubMed ID: 27220111 [TBL] [Abstract][Full Text] [Related]
20. Application of a deep learning system in glaucoma screening and further classification with colour fundus photographs: a case control study. Hung KH; Kao YC; Tang YH; Chen YT; Wang CH; Wang YC; Lee OK BMC Ophthalmol; 2022 Dec; 22(1):483. PubMed ID: 36510171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]