These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 38549795)

  • 1. Electrochemical sensing of B-complex vitamins: current challenges and future prospects with microfluidic integration.
    Pakeeza ; Draz MU; Yaqub A; Jafry AT; Khan M; Ajab H
    RSC Adv; 2024 Mar; 14(15):10331-10347. PubMed ID: 38549795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical vitamin sensors: A critical review.
    Huang L; Tian S; Zhao W; Liu K; Guo J
    Talanta; 2021 Jan; 222():121645. PubMed ID: 33167274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in optical and electrochemical sensing of bisphenol a (BPA) utilizing microfluidic Technology: A mini perspective.
    Kumar P; Shimali ; Chamoli S; Khondakar KR
    Methods; 2023 Dec; 220():69-78. PubMed ID: 37951559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases.
    Ebrahimi G; Samadi Pakchin P; Shamloo A; Mota A; de la Guardia M; Omidian H; Omidi Y
    Mikrochim Acta; 2022 Jun; 189(7):252. PubMed ID: 35687204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
    Wolfrum B; Kätelhön E; Yakushenko A; Krause KJ; Adly N; Hüske M; Rinklin P
    Acc Chem Res; 2016 Sep; 49(9):2031-40. PubMed ID: 27602780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Microfluidics-Based Electrochemical Sensors for Foodborne Pathogen Detection.
    Kulkarni MB; Ayachit NH; Aminabhavi TM
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in electrochemical and optical sensing techniques for vitamins detection: a review.
    Kumari A; Vyas V; Kumar S
    ISSS J Micro Smart Syst; 2022; 11(1):329-341. PubMed ID: 34877449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors.
    Wu S; Wang X; Li Z; Zhang S; Xing F
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33265955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review.
    Nadar SS; Patil PD; Tiwari MS; Ahirrao DJ
    Crit Rev Biotechnol; 2021 Nov; 41(7):1046-1080. PubMed ID: 33730940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-soluble vitamins.
    Konings EJ;
    J AOAC Int; 2006; 89(1):285-8. PubMed ID: 16512258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in paper-based sensors.
    Liana DD; Raguse B; Gooding JJ; Chow E
    Sensors (Basel); 2012; 12(9):11505-26. PubMed ID: 23112667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.
    Yang K; Peretz-Soroka H; Liu Y; Lin F
    Lab Chip; 2016 Mar; 16(6):943-58. PubMed ID: 26899264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches.
    Mumtaz Z; Rashid Z; Ali A; Arif A; Ameen F; AlTami MS; Yousaf MZ
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the Fabrication and Electrochemical Aspects of Paper Microfluidics-Based Biosensor Module.
    Kumari R; Singh A; Azad UP; Chandra P
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods and approaches of utilizing ionic liquids as gas sensing materials.
    Rehman A; Zeng X
    RSC Adv; 2015; 5(72):58371-58392. PubMed ID: 29142738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading.
    Yang M; Sun N; Lai X; Zhao X; Zhou W
    Biosensors (Basel); 2023 Dec; 14(1):. PubMed ID: 38248394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical paper-based devices: sensing approaches and progress toward practical applications.
    Noviana E; McCord CP; Clark KM; Jang I; Henry CS
    Lab Chip; 2020 Jan; 20(1):9-34. PubMed ID: 31620764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects.
    Uniyal S; Sharma RK
    Biosens Bioelectron; 2018 Sep; 116():37-50. PubMed ID: 29857260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices.
    Jeerapan I; Moonla C; Thavarungkul P; Kanatharana P
    Prog Mol Biol Transl Sci; 2022; 187(1):249-279. PubMed ID: 35094777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.