These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38549943)

  • 1. Clinical acceptance and dosimetric impact of automatically delineated elective target and organs at risk for head and neck MR-Linac patients.
    Koteva V; Eiben B; Dunlop A; Gupta A; Gangil T; Wong KH; Breedveld S; Nill S; Harrington K; Oelfke U
    Front Oncol; 2024; 14():1358350. PubMed ID: 38549943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial Evaluation of a Novel Cone-Beam CT-Based Semi-Automated Online Adaptive Radiotherapy System for Head and Neck Cancer Treatment - A Timing and Automation Quality Study.
    Yoon SW; Lin H; Alonso-Basanta M; Anderson N; Apinorasethkul O; Cooper K; Dong L; Kempsey B; Marcel J; Metz J; Scheuermann R; Li T
    Cureus; 2020 Aug; 12(8):e9660. PubMed ID: 32923257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region.
    Kieselmann JP; Kamerling CP; Burgos N; Menten MJ; Fuller CD; Nill S; Cardoso MJ; Oelfke U
    Phys Med Biol; 2018 Jul; 63(14):145007. PubMed ID: 29882749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic AI-based contouring of prostate MRI for online adaptive radiotherapy.
    Nachbar M; Lo Russo M; Gani C; Boeke S; Wegener D; Paulsen F; Zips D; Roque T; Paragios N; Thorwarth D
    Z Med Phys; 2024 May; 34(2):197-207. PubMed ID: 37263911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases.
    Zhong Y; Yang Y; Fang Y; Wang J; Hu W
    Front Oncol; 2021; 11():638197. PubMed ID: 34026615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated deep learning auto-segmentation of air volumes for MRI-guided online adaptive radiation therapy of abdominal tumors.
    Ahunbay E; Parchur AK; Xu J; Thill D; Paulson ES; Li XA
    Phys Med Biol; 2023 Jun; 68(12):. PubMed ID: 37253374
    [No Abstract]   [Full Text] [Related]  

  • 8. Dosimetric comparison of automatically propagated prostate contours with manually drawn contours in MRI-guided radiotherapy: A step towards a contouring free workflow?
    Sritharan K; Dunlop A; Mohajer J; Adair-Smith G; Barnes H; Brand D; Greenlay E; Hijab A; Oelfke U; Pathmanathan A; Mitchell A; Murray J; Nill S; Parker C; Sundahl N; Tree AC
    Clin Transl Radiat Oncol; 2022 Nov; 37():25-32. PubMed ID: 36052018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning-Based Delineation of Head and Neck Organs at Risk: Geometric and Dosimetric Evaluation.
    van Rooij W; Dahele M; Ribeiro Brandao H; Delaney AR; Slotman BJ; Verbakel WF
    Int J Radiat Oncol Biol Phys; 2019 Jul; 104(3):677-684. PubMed ID: 30836167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: Time, geometrical, and dosimetric analysis.
    Fung NTC; Hung WM; Sze CK; Lee MCH; Ng WT
    Med Dosim; 2020 Spring; 45(1):60-65. PubMed ID: 31345672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and implementation of an automatic air delineation technique for MRI-guided adaptive radiation therapy.
    Ahunbay E; Parchur AK; Paulson E; Chen X; Omari E; Li XA
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35732168
    [No Abstract]   [Full Text] [Related]  

  • 12. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of autosegmentation techniques on T2-weighted MRI for off-line dose reconstruction in MR-linac workflow for head and neck cancers.
    McDonald BA; Cardenas CE; O'Connell N; Ahmed S; Naser MA; Wahid KA; Xu J; Thill D; Zuhour RJ; Mesko S; Augustyn A; Buszek SM; Grant S; Chapman BV; Bagley AF; He R; Mohamed ASR; Christodouleas J; Brock KK; Fuller CD
    Med Phys; 2024 Jan; 51(1):278-291. PubMed ID: 37475466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer.
    Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W
    Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer.
    Hoang Duc AK; Eminowicz G; Mendes R; Wong SL; McClelland J; Modat M; Cardoso MJ; Mendelson AF; Veiga C; Kadir T; D'Souza D; Ourselin S
    Med Phys; 2015 Sep; 42(9):5027-34. PubMed ID: 26328953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-configuring nnU-Net for automatic delineation of the organs at risk and target in high-dose rate cervical brachytherapy, a low/middle-income country's experience.
    Duprez D; Trauernicht C; Simonds H; Williams O
    J Appl Clin Med Phys; 2023 Aug; 24(8):e13988. PubMed ID: 37042449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Use of a Commercial Artificial Intelligence-Based Software for Autocontouring in Radiation Therapy: Geometric Performance and Dosimetric Impact.
    Hoque SMH; Pirrone G; Matrone F; Donofrio A; Fanetti G; Caroli A; Rista RS; Bortolus R; Avanzo M; Drigo A; Chiovati P
    Cancers (Basel); 2023 Dec; 15(24):. PubMed ID: 38136281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer.
    Li Y; Rao S; Chen W; Azghadi SF; Nguyen KNB; Moran A; Usera BM; Dyer BA; Shang L; Chen Q; Rong Y
    Technol Cancer Res Treat; 2022; 21():15330338221105724. PubMed ID: 35790457
    [No Abstract]   [Full Text] [Related]  

  • 19. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach.
    Cardenas CE; Beadle BM; Garden AS; Skinner HD; Yang J; Rhee DJ; McCarroll RE; Netherton TJ; Gay SS; Zhang L; Court LE
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(3):801-812. PubMed ID: 33068690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical acceptability of automatically generated lymph node levels and structures of deglutition and mastication for head and neck radiation therapy.
    Maroongroge S; Mohamed AS; Nguyen C; Guma De la Vega J; Frank SJ; Garden AS; Gunn BG; Lee A; Mayo L; Moreno A; Morrison WH; Phan J; Spiotto MT; Court LE; Fuller CD; Rosenthal DI; Netherton TJ
    Phys Imaging Radiat Oncol; 2024 Jan; 29():100540. PubMed ID: 38356692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.