BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38550365)

  • 1. Review of Deep Learning Based Autosegmentation for Clinical Target Volume: Current Status and Future Directions.
    Matoska T; Patel M; Liu H; Beriwal S
    Adv Radiat Oncol; 2024 May; 9(5):101470. PubMed ID: 38550365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First Report On Physician Assessment and Clinical Acceptability of Custom-Retrained Artificial Intelligence Models for Clinical Target Volume and Organs-at-Risk Auto-Delineation for Postprostatectomy Patients.
    Hobbis D; Yu NY; Mund KW; Duan J; Rwigema JM; Wong WW; Schild SE; Keole SR; Feng X; Chen Q; Vargas CE; Rong Y
    Pract Radiat Oncol; 2023; 13(4):351-362. PubMed ID: 37030538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Custom-Trained Deep Learning-Based Auto-Segmentation for Male Pelvic Iterative CBCT on C-Arm Linear Accelerators.
    Tegtmeier RC; Kutyreff CJ; Smetanick JL; Hobbis D; Laughlin BS; Toesca DAS; Clouser EL; Rong Y
    Pract Radiat Oncol; 2024 Feb; ():. PubMed ID: 38325548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning auto-segmentation on multi-sequence magnetic resonance images for upper abdominal organs.
    Amjad A; Xu J; Thill D; Zhang Y; Ding J; Paulson E; Hall W; Erickson BA; Li XA
    Front Oncol; 2023; 13():1209558. PubMed ID: 37483486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incremental retraining, clinical implementation, and acceptance rate of deep learning auto-segmentation for male pelvis in a multiuser environment.
    Duan J; Vargas CE; Yu NY; Laughlin BS; Toesca DS; Keole S; Rwigema JCM; Wong WW; Schild SE; Feng X; Chen Q; Rong Y
    Med Phys; 2023 Jul; 50(7):4079-4091. PubMed ID: 37287322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience.
    Hou Z; Gao S; Liu J; Yin Y; Zhang L; Han Y; Yan J; Li S
    Radiol Med; 2023 Oct; 128(10):1250-1261. PubMed ID: 37597126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images.
    Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y
    Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study.
    Choi MS; Chang JS; Kim K; Kim JH; Kim TH; Kim S; Cha H; Cho O; Choi JH; Kim M; Kim J; Kim TG; Yeo SG; Chang AR; Ahn SJ; Choi J; Kang KM; Kwon J; Koo T; Kim MY; Choi SH; Jeong BK; Jang BS; Jo IY; Lee H; Kim N; Park HJ; Im JH; Lee SW; Cho Y; Lee SY; Chang JH; Chun J; Lee EM; Kim JS; Shin KH; Kim YB
    Breast; 2024 Feb; 73():103599. PubMed ID: 37992527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PSA-Net: Deep learning-based physician style-aware segmentation network for postoperative prostate cancer clinical target volumes.
    Balagopal A; Morgan H; Dohopolski M; Timmerman R; Shan J; Heitjan DF; Liu W; Nguyen D; Hannan R; Garant A; Desai N; Jiang S
    Artif Intell Med; 2021 Nov; 121():102195. PubMed ID: 34763810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic clinical target volume delineation for cervical cancer in CT images using deep learning.
    Shi J; Ding X; Liu X; Li Y; Liang W; Wu J
    Med Phys; 2021 Jul; 48(7):3968-3981. PubMed ID: 33905545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ESTRO ACROP guideline on prostate bed delineation for postoperative radiotherapy in prostate cancer.
    Dal Pra A; Dirix P; Khoo V; Carrie C; Cozzarini C; Fonteyne V; Ghadjar P; Gomez-Iturriaga A; Panebianco V; Zapatero A; Bossi A; Wiegel T
    Clin Transl Radiat Oncol; 2023 Jul; 41():100638. PubMed ID: 37251620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.
    Balagopal A; Nguyen D; Morgan H; Weng Y; Dohopolski M; Lin MH; Barkousaraie AS; Gonzalez Y; Garant A; Desai N; Hannan R; Jiang S
    Med Image Anal; 2021 Aug; 72():102101. PubMed ID: 34111573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical Evaluation of an Auto-Segmentation Tool for Spine SBRT Treatment.
    Chen Y; Vinogradskiy Y; Yu Y; Shi W; Liu H
    Front Oncol; 2022; 12():842579. PubMed ID: 35359361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging-based target volume delineation in radiation therapy treatment planning for brain tumors using localized region-based active contour.
    Aslian H; Sadeghi M; Mahdavi SR; Babapour Mofrad F; Astarakee M; Khaledi N; Fadavi P
    Int J Radiat Oncol Biol Phys; 2013 Sep; 87(1):195-201. PubMed ID: 23920396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consensus Delineation Guidelines for Pelvic Lymph Node Radiation Therapy of Prostate Cancer: On Behalf of the Francophone Group of Urological Radiation Therapy (GFRU).
    De Hertogh O; Le Bihan G; Zilli T; Palumbo S; Jolicoeur M; Crehange G; Derashodian T; Roubaud G; Salembier C; Supiot S; Chapet O; Achard V; Sargos P
    Int J Radiat Oncol Biol Phys; 2024 Jan; 118(1):29-40. PubMed ID: 37506982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer.
    Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-configuring nnU-Net for automatic delineation of the organs at risk and target in high-dose rate cervical brachytherapy, a low/middle-income country's experience.
    Duprez D; Trauernicht C; Simonds H; Williams O
    J Appl Clin Med Phys; 2023 Aug; 24(8):e13988. PubMed ID: 37042449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-observer variation of target volume delineation for CT-guided cervical cancer brachytherapy.
    Elmali A; Biltekin F; Sari SY; Gultekin M; Yuce D; Yildiz F
    J Contemp Brachytherapy; 2023 Aug; 15(4):253-260. PubMed ID: 37799120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.