BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 38550661)

  • 1. Discrimination of New and Aged Seeds Based on On-Line Near-Infrared Spectroscopy Technology Combined with Machine Learning.
    Zhu Y; Fan S; Zuo M; Zhang B; Zhu Q; Kong J
    Foods; 2024 May; 13(10):. PubMed ID: 38790869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cotton seed cultivar identification based on the fusion of spectral and textural features.
    Liu X; Guo P; Xu Q; Du W
    PLoS One; 2024; 19(5):e0303219. PubMed ID: 38805455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms.
    Sun J; Nirere A; Dusabe KD; Yuhao Z; Adrien G
    J Food Sci; 2024 Jul; 89(7):4403-4418. PubMed ID: 38957090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible/near-infrared hyperspectral imaging combined with machine learning for identification of ten
    Chen Z; Xue X; Wu H; Gao H; Wang G; Ni G; Cao T
    Front Plant Sci; 2024; 15():1413215. PubMed ID: 38882569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth period determination and color coordinates visual analysis of tomato using hyperspectral imaging technology.
    Shao Y; Ji S; Shi Y; Xuan G; Jia H; Guan X; Chen L
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 319():124538. PubMed ID: 38833885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of hyperspectral imaging for nondestructive determination of α-farnesene and conjugated trienol content in 'Yali' pear.
    Cheng H; Zhang Z; Cheng Y; Guan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jun; 321():124688. PubMed ID: 38941754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid non-destructive monitoring and quality assessment of the fumigation process of Shanxi aged vinegar based on Vis-NIR hyperspectral imaging combined with multiple chemometric algorithms.
    Zhang X; Huang X; Harrington Aheto J; Xu F; Dai C; Ren Y; Wang L; Yu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 320():124539. PubMed ID: 38870693
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Chen M; Lin C; Sun Y; Yang R; Lu X; Lou W; Deng X; Zhao Y; Liu F
    Plants (Basel); 2024 May; 13(11):. PubMed ID: 38891310
    [No Abstract]   [Full Text] [Related]  

  • 9. Hyperspectal imaging technology for phenotyping iron and boron deficiency in
    Li H; Wan L; Li C; Wang L; Zhu S; Chen X; Wang P
    Front Plant Sci; 2024; 15():1351301. PubMed ID: 38855462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of honey adulteration using machine learning.
    Ahmed E
    PLOS Digit Health; 2024 Jun; 3(6):e0000536. PubMed ID: 38857195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Bloodstains by Species Using Extreme Learning Machine and Hyperspectral Imaging Technology.
    Jianqiang Z; Xinyu Z; Caiping L; Ying L; Huihui R; Hanyu Z; Xingshuai P; Jiateng W; Yantong S; Chengyun P; Qifu Y
    Appl Spectrosc; 2024 Jun; ():37028241261727. PubMed ID: 38881166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A LIBSVM quality assessment model for apple spoilage during storage based on hyperspectral data.
    Wang Z; Yin Y; Yu H; Yuan Y
    Anal Methods; 2024 Jul; ():. PubMed ID: 38958385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral identification of oil adulteration using machine learning techniques.
    Aqeel M; Sohaib A; Iqbal M; Rehman HU; Rustam F
    Curr Res Food Sci; 2024; 8():100773. PubMed ID: 38840806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Minimum Spanning Forest Based Hyperspectral Image Classification Method for Cancerous Tissue Detection.
    Pike R; Patton SK; Lu G; Halig LV; Wang D; Chen ZG; Fei B
    Proc SPIE Int Soc Opt Eng; 2014 Mar; 9034():90341W. PubMed ID: 25426272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing multi-spectral ore sorting incorporating wavelength selection utilizing neighborhood component analysis for effective arsenic mineral detection.
    Okada N; Nozaki H; Nakamura S; Manjate EPA; Gebretsadik A; Ohtomo Y; Arima T; Kawamura Y
    Sci Rep; 2024 May; 14(1):11544. PubMed ID: 38773148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturity Classification of Rapeseed Using Hyperspectral Image Combined with Machine Learning.
    Feng H; Chen Y; Song J; Lu B; Shu C; Qiao J; Liao Y; Yang W
    Plant Phenomics; 2024; 6():0139. PubMed ID: 38550661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Rapid detection of nitrogen content and distribution in oilseed rape leaves based on hyperspectral imaging].
    Zhang XL; Liu F; Nie PC; He Y; Bao YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2513-8. PubMed ID: 25532355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds.
    Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117973. PubMed ID: 31887678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning.
    Xu P; Sun W; Xu K; Zhang Y; Tan Q; Qing Y; Yang R
    Foods; 2022 Dec; 12(1):. PubMed ID: 36613360
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.