These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38550661)

  • 21. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods.
    Zhang J; Cheng T; Guo W; Xu X; Qiao H; Xie Y; Ma X
    Plant Methods; 2021 May; 17(1):49. PubMed ID: 33941211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM.
    He Y; Zhang W; Ma Y; Li J; Ma B
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-destructive detection of protein content in mulberry leaves by using hyperspectral imaging.
    Li X; Peng F; Wei Z; Han G; Liu J
    Front Plant Sci; 2023; 14():1275004. PubMed ID: 37900759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Application of successive projections algorithm to nondestructive determination of total amino acids in oilseed rape leaves].
    Liu F; Zhang F; Fang H; Jin ZL; Zhou WJ; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3079-83. PubMed ID: 20101990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discrimination of Deoxynivalenol Levels of Barley Kernels Using Hyperspectral Imaging in Tandem with Optimized Convolutional Neural Network.
    Fan KJ; Liu BY; Su WH
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intelligent identification on cotton verticillium wilt based on spectral and image feature fusion.
    Lu Z; Huang S; Zhang X; Shi Y; Yang W; Zhu L; Huang C
    Plant Methods; 2023 Jul; 19(1):75. PubMed ID: 37516875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology.
    Zhou X; Zhao C; Sun J; Yao K; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122288. PubMed ID: 36608517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperspectral imaging for predicting the allicin and soluble solid content of garlic with variable selection algorithms and chemometric models.
    Rahman A; Faqeerzada MA; Cho BK
    J Sci Food Agric; 2018 Sep; 98(12):4715-4725. PubMed ID: 29542139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging.
    Jiang H; Yuan W; Ru Y; Chen Q; Wang J; Zhou H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121689. PubMed ID: 35914356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of Hyperspectral Imaging to Detect Sclerotinia sclerotiorum on Oilseed Rape Stems.
    Kong W; Zhang C; Huang W; Liu F; He Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29300315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging.
    Fu L; Sun J; Wang S; Xu M; Yao K; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121641. PubMed ID: 35870430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperspectral imaging with machine learning for non-destructive classification of
    Xu Y; Wu W; Chen Y; Zhang T; Tu K; Hao Y; Cao H; Dong X; Sun Q
    Front Plant Sci; 2022; 13():1031849. PubMed ID: 36523615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Variety recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning].
    Cheng SX; Kong WW; Zhang C; Liu F; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2519-22. PubMed ID: 25532356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of sugar content in Lingwu jujube by NIR-hyperspectral imaging.
    Yang X; Liu G; He J; Kang N; Yuan R; Fan N
    J Food Sci; 2021 Apr; 86(4):1201-1214. PubMed ID: 33770419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of different varieties of sesame oil using near-infrared hyperspectral imaging and chemometrics algorithms.
    Xie C; Wang Q; He Y
    PLoS One; 2014; 9(5):e98522. PubMed ID: 24879306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unified Classification of Bacterial Colonies on Different Agar Media Based on Hyperspectral Imaging and Machine Learning.
    Gu P; Feng YZ; Zhu L; Kong LQ; Zhang XL; Zhang S; Li SW; Jia GF
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32295273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nondestructive classification of soft rot disease in napa cabbage using hyperspectral imaging analysis.
    Song H; Yoon SR; Dang YM; Yang JS; Hwang IM; Ha JH
    Sci Rep; 2022 Aug; 12(1):14707. PubMed ID: 36038711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cotton seed cultivar identification based on the fusion of spectral and textural features.
    Liu X; Guo P; Xu Q; Du W
    PLoS One; 2024; 19(5):e0303219. PubMed ID: 38805455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis.
    Pang L; Wang J; Men S; Yan L; Xiao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118888. PubMed ID: 32947159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.