These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 38550696)
1. Constructing ultra-stable, high-energy, and flexible aqueous zinc-ion batteries using environment-friendly organic cathodes. Ding C; Wang Y; Li C; Wang J; Zhang Q; Huang W Chem Sci; 2024 Mar; 15(13):4952-4959. PubMed ID: 38550696 [TBL] [Abstract][Full Text] [Related]
2. Novel Organic Cathode with Conjugated N-Heteroaromatic Structures for High-Performance Aqueous Zinc-Ion Batteries. Li J; Huang L; Lv H; Wang J; Wang G; Chen L; Liu Y; Guo W; Yu F; Gu T ACS Appl Mater Interfaces; 2022 Aug; 14(34):38844-38853. PubMed ID: 35975905 [TBL] [Abstract][Full Text] [Related]
3. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Zhao Q; Huang W; Luo Z; Liu L; Lu Y; Li Y; Li L; Hu J; Ma H; Chen J Sci Adv; 2018 Mar; 4(3):eaao1761. PubMed ID: 29511734 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional Electrolyte Additive Enables Highly Reversible Anodes and Enhanced Stable Cathodes for Aqueous Zinc-Ion Batteries. Gong X; Yang H; Wang J; Wang G; Tian J ACS Appl Mater Interfaces; 2023 Jan; 15(3):4152-4165. PubMed ID: 36629259 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical Performance and Mechanism of Bimetallic Organic Framework for Advanced Aqueous Zn Ion Batteries. Lv H; Wang J; Gao X; Wang Y; Shen Y; Liu P; Wang G; Chen L; Gu T ACS Appl Mater Interfaces; 2023 Oct; 15(40):47094-47102. PubMed ID: 37769112 [TBL] [Abstract][Full Text] [Related]
6. Inducing Mn defects within MnTiO Jiang Y; Jia M; Wan Y; Guo M; Zhang Z; Duan C; Yan X; Zhang X J Colloid Interface Sci; 2024 Jun; 664():588-595. PubMed ID: 38490034 [TBL] [Abstract][Full Text] [Related]
7. A Polymer/Graphene Composite Cathode with Active Carbonyls and Secondary Amine Moieties for High-Performance Aqueous Zn-Organic Batteries Involving Dual-Ion Mechanism. Zhang H; Xu D; Wang L; Ye Z; Chen B; Pei L; Wang Z; Cao Z; Shen J; Ye M Small; 2021 Jun; 17(25):e2100902. PubMed ID: 34028987 [TBL] [Abstract][Full Text] [Related]
8. An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Guo Z; Ma Y; Dong X; Huang J; Wang Y; Xia Y Angew Chem Int Ed Engl; 2018 Sep; 57(36):11737-11741. PubMed ID: 30019809 [TBL] [Abstract][Full Text] [Related]
9. A Sulfur Heterocyclic Quinone Cathode Towards High-Rate and Long-Cycle Aqueous Zn-Organic Batteries. Sun QQ; Sun T; Du JY; Li K; Xie HM; Huang G; Zhang XB Adv Mater; 2023 Jun; 35(22):e2301088. PubMed ID: 37036047 [TBL] [Abstract][Full Text] [Related]
10. Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts. Zhang W; Liang S; Fang G; Yang Y; Zhou J Nanomicro Lett; 2019 Aug; 11(1):69. PubMed ID: 34137994 [TBL] [Abstract][Full Text] [Related]
11. Vanadate-Based Fibrous Electrode Materials for High Performance Aqueous Zinc Ion Batteries. Wang Q; Wu J; Wang M; Yu H; Qiu X; Chen W Adv Sci (Weinh); 2024 Mar; 11(11):e2307872. PubMed ID: 38178606 [TBL] [Abstract][Full Text] [Related]
12. Ferroelectric-Enhanced cathode kinetics toward High-Performance aqueous Zinc-Ion batteries. Li Y; Cui X; Yan J; Zhang Y; Xie E; Fu J J Colloid Interface Sci; 2023 Nov; 650(Pt B):1605-1611. PubMed ID: 37490837 [TBL] [Abstract][Full Text] [Related]
13. A new In Situ Oxidized 2D Layered MnBi Dai J; Zhang S; Wang F; Wen L; Sun Y; Ren K; Xu Y; Zeng W; Wang S Small; 2024 Aug; 20(33):e2307033. PubMed ID: 38552219 [TBL] [Abstract][Full Text] [Related]
14. Sandwich-Like Heterostructures of MoS Li S; Liu Y; Zhao X; Shen Q; Zhao W; Tan Q; Zhang N; Li P; Jiao L; Qu X Adv Mater; 2021 Mar; 33(12):e2007480. PubMed ID: 33598960 [TBL] [Abstract][Full Text] [Related]
15. In-situ preparation of amorphous VO Wu J; Yang Z; Chen H J Colloid Interface Sci; 2023 Nov; 649():372-383. PubMed ID: 37354794 [TBL] [Abstract][Full Text] [Related]
16. Oxygenated copper vanadium selenide composite nanostructures as a cathode material for zinc-ion batteries with high stability up to 10 000 cycles. Narsimulu D; Krishna BNV; Shanthappa R; Yu JS Nanoscale; 2023 Feb; 15(8):3978-3990. PubMed ID: 36723257 [TBL] [Abstract][Full Text] [Related]
17. One-Dimensional π-d Conjugated Conductive Metal-Organic Framework with Dual Redox-Active Sites for High-Capacity and Durable Cathodes for Aqueous Zinc Batteries. Sang Z; Liu J; Zhang X; Yin L; Hou F; Liang J ACS Nano; 2023 Feb; 17(3):3077-3087. PubMed ID: 36688450 [TBL] [Abstract][Full Text] [Related]
18. Doping Engineering in Manganese Oxides for Aqueous Zinc-Ion Batteries. Ji F; Yu J; Hou S; Hu J; Li S Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998410 [TBL] [Abstract][Full Text] [Related]
19. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries. Kumankuma-Sarpong J; Tang S; Guo W; Fu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008 [TBL] [Abstract][Full Text] [Related]
20. Achieving high-rate and durable aqueous rechargeable Zn-Ion batteries by enhancing the successive electrochemical conversion reactions. Cui X; Zhang Y; Cheng S; Liu Y; Shao Z; Sun Z; Wu Y; Guo H; Fu J; Xie E J Colloid Interface Sci; 2022 Aug; 620():127-134. PubMed ID: 35421749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]